Publications by authors named "Yukang Hou"

Understanding the underlying mechanisms and links between genome evolution and adaptive innovations stands as a key goal in evolutionary studies. Poplars, among the world's most widely distributed and cultivated trees, exhibit extensive phenotypic diversity and environmental adaptability. In this study, we present a genus-level super-pangenome comprising 19 Populus genomes, revealing the likely pivotal role of private genes in facilitating local environmental and climate adaptation.

View Article and Find Full Text PDF

Histone deacetylases (HDACs), widely found in various types of eukaryotic cells, play crucial roles in biological process, including the biotic and abiotic stress responses in plants. However, no research on the HDACs of has been reported. Here, 14 putative genes were identified and annotated in .

View Article and Find Full Text PDF

To address the problem of ambiguity and one-sidedness in the evaluation of comprehensive comfort perceptions during lower limb exercise, this paper deconstructs the comfort perception into two dimensions: psychological comfort and physiological comfort. Firstly, we designed a fixed-length weightless lower limb squat exercise test to collect original psychological comfort data and physiological comfort data. The principal component analysis and physiological comfort index algorithm were used to extract the comfort index from the original data.

View Article and Find Full Text PDF

Epigenetic regulation is one of the most precise and subtle ways of gene regulation, including DNA modification, histone modification, RNA modification, histone variants, chromatin remodeling, and long non-coding RNAs (lncRNAs). Chromatin modification is the most basic type of epigenetic regulation, which plays a key role in a myriad of developmental and physiological processes that have been thoroughly studied. These modifications are usually completed by a series of conserved chromatin modification complexes in eukaryotes.

View Article and Find Full Text PDF

Plants experience a wide array of environmental stimuli, some of which are frequent occurrences of cold weather, which have priming effects on agricultural production and agronomic traits. DNA methylation may act as an epigenetic regulator for the cold response of Tartary buckwheat (). Combined with long-term field observation and laboratory experiments, comparative phenome, methylome, and transcriptome analyses were performed to investigate the potential epigenetic contributions for the cold priming of Tartary buckwheat variety Dingku1.

View Article and Find Full Text PDF