Publications by authors named "Yukako Tohsato"

Article Synopsis
  • * The study utilized Empirical Dynamic Modelling to analyze phytoplankton data, focusing on two groups of the Pseudo-nitzschia species and their connections with other phytoplankton, as well as environmental factors like temperature and salinity.
  • * Findings indicated that each Pseudo-nitzschia group had specific partner algal species, with salinity influencing the Pseudo-nitzschia seriata group, while temperature had no significant effect; this research offers a new way to predict harmful algal blooms via species
View Article and Find Full Text PDF
Article Synopsis
  • SSBD is a platform designed for sharing and reusing bioimaging data, recently updated to include a public repository (SSBD:repository) for all types of bioimaging data and a curated database (SSBD:database) for highly reusable data.
  • This two-tiered system balances the need for quick data publication with the demand for well-annotated, rich metadata, enhancing the ability to share and reuse bioimaging data.
  • SSBD is becoming a vital part of the international consortium foundingGIDE, which aims to create a global ecosystem for image data, allowing for improved data exchange and cross-searching capabilities across different regions.
View Article and Find Full Text PDF

Genome-scale constraint-based metabolic networks play an important role in the simulation of growth-coupled production, which means that cell growth and target metabolite production are simultaneously achieved. For growth-coupled production, a minimal reaction-network-based design is known to be effective. However, the obtained reaction networks often fail to be realized by gene deletions due to conflicts with gene-protein-reaction (GPR) relations.

View Article and Find Full Text PDF
Article Synopsis
  • * The authors developed four new mouse lines that use CreER-recombination to tag neuron subsets based on their differentiation timing, allowing for active experimentation on these neurons in live animals.
  • * They created a publicly accessible brain atlas (NeuroGT) that contains images of the tagged neurons and their features throughout the brain, helping researchers find relevant tagging information for their studies.
View Article and Find Full Text PDF

BD5 is a new binary data format based on HDF5 (hierarchical data format version 5). It can be used for representing quantitative biological dynamics data obtained from bioimage informatics techniques and mechanobiological simulations. Biological Dynamics Markup Language (BDML) is an XML (Extensible Markup Language)-based open format that is also used to represent such data; however, it becomes difficult to access quantitative data in BDML files when the file size is large because parsing XML-based files requires large computational resources to first read the whole file sequentially into computer memory.

View Article and Find Full Text PDF

In gene function analysis, it is arduous to identify gene function individually, and the way to screen out all involved genes according to a particular phenotype or disease usually shows us little information for a specific problem. We present a data-driven analysis system based on wild type (WT) embryos to study the concrete function of each gene associated with certain category of abnormal phenotypes. It can be applied to genes with very few RNAi embryos.

View Article and Find Full Text PDF

Motivation: Rapid advances in live-cell imaging analysis and mathematical modeling have produced a large amount of quantitative data on spatiotemporal dynamics of biological objects ranging from molecules to organisms. There is now a crucial need to bring these large amounts of quantitative biological dynamics data together centrally in a coherent and systematic manner. This will facilitate the reuse of this data for further analysis.

View Article and Find Full Text PDF

Glycans play important roles in such cell-cell interactions as signaling and adhesion, including processes involved in pathogenic infections, cancers, and neurological diseases. Glycans are biosynthesized by multiple glycosyltransferases (GTs), which function sequentially. Excluding mucin-type O-glycosylation, the non-reducing terminus of glycans is biosynthesized in the Golgi apparatus after the reducing terminus is biosynthesized in the ER.

View Article and Find Full Text PDF

Motivation: Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats.

Results: We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.

View Article and Find Full Text PDF

Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12.

View Article and Find Full Text PDF

Dynamic modeling is a powerful tool for predicting changes in metabolic regulation. However, a large number of input parameters, including kinetic constants and initial metabolite concentrations, are required to construct a kinetic model. Therefore, it is important not only to optimize the kinetic parameters, but also to investigate the effects of their perturbations on the overall system.

View Article and Find Full Text PDF

Motivation: The enzyme nomenclature system, commonly known as the enzyme commission (EC) number, plays a key role in classifying and predicting enzymatic reactions. However, numerous reactions have been described in various pathways that do not have an official EC number, and the reactions are not expected to have an EC number assigned because of a lack of articles published on enzyme assays. To predict the EC number of a non-classified enzymatic reaction, we focus on the structural similarity of its substrate and product to the substrate and product of reactions that have been classified.

View Article and Find Full Text PDF

Intrinsically disordered (ID) proteins (IDPs) are abundant in eukaryotes but are scarce in prokaryotes. Mitochondria, cellular organelles that descended from Rickettsia-like α-proteobacteria, are at the intersection between prokaryotes and eukaryotes. Although IDPs are reportedly as rare in mitochondria as in bacteria, these details remained to be clarified.

View Article and Find Full Text PDF

Brine shrimp are primitive crustacean arthropodal model organisms, second to daphnia, which can survive in high-salinity environments. Their oviposited cysts, cuticle-covered diapausing eggs, are highly resistant to dryness. To elucidate specialties of brine shrimp, this study characterized glycosphingolipids, which are signal transduction-associated material.

View Article and Find Full Text PDF

PGL-1 is an RNA-binding protein component of germ granules and essential for fertility in Caenorhabditis elegans. To clarify the molecular function of PGL-1, we performed comparative proteomic analysis using 2-D DIGE and LC-MS/MS. Five groups of synchronized adult hermaphrodites were analyzed: (1) wild-type N2 grown at 20°C, (2) pgl-1(bn101) mutants grown at 20°C, (3) pgl-1(bn101) mutants grown at 20°C then upshifted to 25°C after the L1 stage, (4) pgl-1(ct131) mutants grown at 20°C, and (5) pgl-1(ct131) mutants grown at 20°C then upshifted to 25°C after the L1 stage.

View Article and Find Full Text PDF

Systematic studies have revealed that single gene deletions often display little phenotypic effects under laboratory conditions and that in many cases gene dispensability depends on the experimental conditions. To elucidate the environmental dependency of genes, we analyzed the effects of gene deletions by Phenotype MicroArray™ (PM), a system for quantitative screening of thousands of phenotypes in a high-throughput manner. Here, we proposed a new statistical approach to minimize error inherent in measurements of low respiration rates and find which mutants showed significant phenotypic changes in comparison to the wild-type.

View Article and Find Full Text PDF

Phenotype MicroArray (PM) technology is high-throughput phenotyping system and is directly applicable to assay the effects of genetic changes in cells. In this study, we performed comprehensive PM analysis using single gene deletion mutants of central metabolic pathway and related genes. To elucidate the structure of central metabolic networks in Escherichia coli K-12, we focused 288 different PM conditions of carbon and nitrogen sources and performed bioinformatic analysis.

View Article and Find Full Text PDF