Publications by authors named "Yukako Ozasa"

Notch signaling is involved in an intercellular communication mechanism that is essential for coordinated cell fate determination and tissue morphogenesis. The biological effects of Notch signaling are context-dependent. We investigated the functional and hierarchical relationship between angiotensin (Ang) II receptor signaling and Notch signaling in vascular smooth muscle cells (VSMCs).

View Article and Find Full Text PDF

The angiotensin II (Ang II) type 1 (AT(1)) receptor mainly mediates the physiological and pathological actions of Ang II, but recent studies have suggested that AT(1) receptor inherently shows spontaneous constitutive activity even in the absence of Ang II in culture cells. To elucidate the role of Ang II-independent AT(1) receptor activation in the pathogenesis of cardiac remodeling, we generated transgenic mice overexpressing AT(1) receptor under the control of α-myosin heavy chain promoter in angiotensinogen-knockout background (AT(1)Tg-AgtKO mice). In AT(1)Tg-AgtKO hearts, redistributions of the Gα(q11) subunit into cytosol and phosphorylation of extracellular signal-regulated kinases were significantly increased, compared with angiotensinogen-knockout mice hearts, suggesting that the AT(1) receptor is constitutively activated independent of Ang II.

View Article and Find Full Text PDF

The activation of renin-angiotensin system contributes to the development of metabolic syndrome and diabetes as well as hypertension. However, it remains undetermined how renin-angiotensin system is implicated in feeding behavior. Here, we show that angiotensin II type 1 (AT(1)) receptor signaling regulates the hypothalamic neurocircuit that is involved in the control of food intake.

View Article and Find Full Text PDF
Article Synopsis
  • Atrial fibrillation (AF) increases the risk of stroke and heart failure, and recent research highlights the significant role of mast cells in its development within stressed mouse hearts.
  • Pressure overload leads to mast cell infiltration and fibrosis, making the atria more susceptible to AF, which can be mitigated by treatments stabilizing mast cells or blocking PDGF-A signaling.
  • These findings suggest targeting mast cells and their interaction with PDGF-A could be a potential strategy for preventing AF in patients with heart stress.
View Article and Find Full Text PDF

Insulin-like growth factor-1 (IGF-1) signaling has recently been implicated in the development of cardiac hypertrophy after long-term endurance training, via mechanisms that may involve energetic stress. Given the potential overlap of insulin and IGF-1 signaling we sought to determine if both signaling pathways could contribute to exercise-induced cardiac hypertrophy following shorter-term exercise training. Studies were performed in mice with cardiac-specific IGF-1 receptor (IGF1R) knockout (CIGFRKO), mice with cardiac-specific insulin receptor (IR) knockout (CIRKO), CIGFRKO mice that lacked one IR allele in cardiomyocytes (IGFR-/-IR+/-), and CIRKO mice that lacked one IGF1R allele in cardiomyocytes (IGFR+/-IR-/-).

View Article and Find Full Text PDF