Genome-wide polygenic risk scores (GW-PRSs) have been reported to have better predictive ability than PRSs based on genome-wide significance thresholds across numerous traits. We compared the predictive ability of several GW-PRS approaches to a recently developed PRS of 269 established prostate cancer-risk variants from multi-ancestry GWASs and fine-mapping studies (PRS). GW-PRS models were trained with a large and diverse prostate cancer GWAS of 107,247 cases and 127,006 controls that we previously used to develop the multi-ancestry PRS.
View Article and Find Full Text PDFCharacterizing the tissue-specific binding sites of transcription factors (TFs) is essential to reconstruct gene regulatory networks and predict functions for non-coding genetic variation. DNase-seq footprinting enables the prediction of genome-wide binding sites for hundreds of TFs simultaneously. Despite the public availability of high-quality DNase-seq data from hundreds of samples, a comprehensive, up-to-date resource for the locations of genomic footprints is lacking.
View Article and Find Full Text PDF