Publications by authors named "Yukai Suo"

Yunnan Province is the major region for coffee (Coffea arabica) cultivation in China, contributing to over 98% of the national yield and total production value (Ma et al. 2022). In May 2023, brown spot symptoms were observed only on the leaves of coffee plants in a field located in Baoshan City (98°52'37.

View Article and Find Full Text PDF

Phenolic compounds (PCs) generated during pretreatment of lignocellulosic biomass severely hinder the biorefinery by Clostridia. As a hyperbutyrate-producing strain, Clostridium tyrobutyricum has excellent tolerance to PCs, but its tolerance mechanism is poorly understood. In this study, a comprehensive transcriptome analysis was applied to elucidate the response of C.

View Article and Find Full Text PDF

Dinteranthus vanzylii is a low-growing species in the family Aizoaceae, native to southern Africa, with a pair of thick grey leaves covered with dark red spots and stripes. This stone-like succulent grows near the ground, which may protect it from water evaporation and herbivores. Dinteranthus vanzylii has become popular in China due to its attractive appearance and easy indoor cultivation.

View Article and Find Full Text PDF

Lignocellulosic biomass is considered the most abundant and renewable feedstock for biobased butyric acid production. However, the furan derivatives (FAs, mainly furfural and 5-hydroxymethylfurfural) generated from the pretreatment of lignocellulose severely inhibit the growth of Clostridium tyrobutyricum, which is the best strain for producing butyric acid. The tolerance mechanism of C.

View Article and Find Full Text PDF

Mammillaria humboldtii found in Mexico is a short-globose ornamental cactus species of the Cactaceae family, which has gained increasing popularity in China. It is characterized by tuberculate stems, dimorphic areoles, small pink flowers and pitted seed cell walls. The populations of wild M.

View Article and Find Full Text PDF

This study aimed to evaluate the effects of processing methods on the content of biogenic amines in Zijuan tea by using derivatization and hot trichloroacetic acid extraction with HPLC-UV. The results showed that the most abundant biogenic amine in the original leaves was butylamine, followed by ethylamine, methylamine, 1,7-diaminoheptane, histamine, tyramine, and 2-phenethylamine. However, during the process of producing green tea, white tea, and black tea, the content of ethylamine increased sharply, which directly led to their total contents of biogenic amines increasing by 184.

View Article and Find Full Text PDF

Clostridium tyrobutyricum cannot utilize galactose, which is abundant in lignocellulose and red algae, as a carbon source for butyric acid production. Hence, when using galactose-rich coffee ground hydrolysate as the substrate, the fermentation performance of C. tyrobutyricum is poor.

View Article and Find Full Text PDF

When lignocellulosic biomass was used for acetone-butanol-ethanol (ABE) fermentation, several lignocellulose-derived inhibitors, which are toxic to Clostridium acetobutylicum, were generated during acid hydrolysis process and seriously hindered the industrialization of lignocellulosic butanol. In this study, an engineered strain 824(proABC) with significantly improved tolerance to multiple lignocellulose-derived inhibitors (formic acid and phenolic compounds) was constructed by strengthening the proline biosynthesis. The engineered strain exhibited more effective synthesis ability of proline and scavenging ability of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Resistance to furan derivatives and phenolic compounds plays an important role in the use of lignocellulosic biomass for biological production of chemicals and fuels. This study confirmed that expression of short-chain dehydrogenase/reductase (SDR) from Clostridium beijerinckii NCIMB 8052 significantly improved the tolerance of C. tyrobutyricum to furfural due to the enhanced activity for furfural reduction.

View Article and Find Full Text PDF

Vitamin B1 (VB1) is an essential coenzyme for carbohydrate metabolism and involved in energy generation in most organisms. In this study, we found that insufficient biosynthesis of VB1 in Clostridium acetobutylicum ATCC 824 is a major limiting factor for efficient acetone-butanol-ethanol (ABE) fermentation. In order to improve the fermentation performance of C.

View Article and Find Full Text PDF

Butyric acid fermentation by Clostridium couples with the synthesis of acetic acid. But the presence of acetic acid reduces butyric acid yield and increases separation and purification costs of butyric acid. Hence, enhancing the butyrate/acetate ratio is important for economical butyric acid production.

View Article and Find Full Text PDF

Lignocellulosic biomass is the most abundant and renewable substrate for biological fermentation, but the inhibitors present in the lignocellulosic hydrolysates could severely inhibit the cell growth and productivity of industrial strains. This study confirmed that overexpressing of native groESL in Clostridium tyrobutyricum could significantly improve its tolerance to lignocellulosic hydrolysate-derived inhibitors, especially for phenolic compounds. Consequently, ATCC 25755/groESL showed a better performance in butyric acid fermentation with hydrolysates of corn cob, corn straw, rice straw, wheat straw, soybean hull and soybean straw, respectively.

View Article and Find Full Text PDF

In recent years, increasing concerns over environment, energy and climate have renewed interest in biotechnological production of butanol. However, growth inhibition by fermentation products and inhibitory components from raw biomass has hindered the development of acetone-butanol-ethanol (ABE) fermentation. Improving the cellular robustness of Clostridium acetobutylicum is of great importance for efficient ABE production.

View Article and Find Full Text PDF
Article Synopsis
  • * Key genes like grpE, dnaK, dnaJ, groEL, groES, and htpG were found to be significantly enhanced under butyric acid stress, with groESL overexpression notably improving butyric acid tolerance and production.
  • * Feeding C. tyrobutyricum ATCC 25755 with a high level of GroESL in bioreactors led to a remarkable yield of 52.2 g/L of butyric acid
View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to develop a method for producing isopropanol and butanol using cassava bagasse hydrolysate treated with sulfuric acid, improving yields through co-culturing Clostridium beijerinckii and Clostridium tyrobutyricum in an immobilized-cell fermentation setup.
  • Through batch fermentation, concentrations of isopropanol and butanol reached 6.19 g/L and 12.32 g/L, with total solvent yields at 0.42 g/g and volumetric productivity at 0.30 g/L/h.
  • Co-culturing increased the solvent concentrations to 7.63 g/L isopropanol and 13.26 g/L butanol, enhancing
View Article and Find Full Text PDF

Welan gum production by Alcaligenes sp. ATCC31555 from cane molasses was studied in batch fermentation to reduce production costs and enhance gum production. The pretreatment of cane molasses, agitation speed and the addition of supplements were investigated to optimize the process.

View Article and Find Full Text PDF