Accelerator-based boron neutron capture therapy (BNCT) systems employing a solid-state lithium target indicated the reduction of neutron flux over the lifetime of a target, and its reduction could represent the neutron flux model. This study proposes a novel compensatory approach for delivering the required neutron fluence and validates its clinical applicability. The proposed approach relies on the neutron flux model and the cumulative sum of real-time measurements of proton charges.
View Article and Find Full Text PDF. In current dosimetry protocols, the estimated uncertainty of the measured absorbed dose to waterin carbon-ion beams is approximately 3%. This large uncertainty is mainly contributed by the standard uncertainty of the beam quality correction factor.
View Article and Find Full Text PDFThis study aimed to clarify the differences in radiotherapy dose characteristics and delivery efficiency between the supine and prone positions in patients with prostate cancer using the CyberKnife. The planning computed tomography (CT) and delineations of the prone position were obtained by rotating the supine CT images with delineations of 180° using image processing software. The optimization parameters for planning target volume (PTV) and organs at risk (OARs) were based on the prone position.
View Article and Find Full Text PDF