Objective: Signal-transducing adaptor protein (STAP) family members function as adaptor molecules and are involved in several events during immune responses. Notably however, the biological functions of STAP-1 in other cells are not known. We aimed to investigate the functions of STAP-1 in invariant natural killer T (iNKT) cells and iNKT cell-dependent hepatitis.
View Article and Find Full Text PDFp53 is a tumor suppressor protein, and its missense mutations are frequently found in human cancers. During the multi-step progression of cancer, p53 mutations generally accumulate at the mid or late stage, but not in the early stage, and the underlying mechanism is still unclear. In this study, using mammalian cell culture and mouse ex vivo systems, we demonstrate that when p53R273H- or p53R175H-expressing cells are surrounded by normal epithelial cells, mutant p53 cells undergo necroptosis and are basally extruded from the epithelial monolayer.
View Article and Find Full Text PDFBranched-chain amino acids (BCAAs) exhibit many physiological functions. However, the potential link and mechanism between BCAA and skin function are unknown. We examined the effects of deletion of branched-chain α-keto acid dehydrogenase kinase (BDK), a key enzyme in BCAA catabolism, on type I and III tropocollagen syntheses in mice.
View Article and Find Full Text PDFNik-related kinase (Nrk) is a Ser/Thr kinase and was initially discovered as a molecule that was predominantly detected in skeletal muscles during development. A recent study using Nrk-null mice suggested the importance of Nrk in proper placental development; however, the molecular mechanism remains unknown. In this study, we demonstrated that differentiated trophoblasts from murine embryonic stem cells (ESCs) endogenously expressed Nrk and that Nrk disruption led to the enhanced proliferation of differentiated trophoblasts.
View Article and Find Full Text PDFThe expression of p16INK4a has been reported to be a significant marker for malignant transformation of epidermal tumors. However, little is known about sweat gland tumors. We examined the immunohistological expression of p16INK4a in benign and malignant sweat gland tumors.
View Article and Find Full Text PDFThe clathrin-dependent endocytic pathway is crucial for endosomal TLR3- and TLR4-mediated Toll-IL-1R domain-containing adaptor molecule-1 (TICAM-1) signaling. TLR4 uses a different signaling platform, plasma membrane and endosomes, for activation of TIRAP-MyD88 and TICAM-2-TICAM-1, respectively. LPS-induced endocytosis of TLR4 is mandatory for TICAM-1-mediated signaling including IFN-β production.
View Article and Find Full Text PDFRIG-I-mediated type I interferon (IFN) production and nuclease-mediated viral RNA degradation are essential for antiviral innate immune responses. DDX60 is an IFN-inducible cytoplasmic helicase. Here, we report that DDX60 is a sentinel for both RIG-I activation and viral RNA degradation.
View Article and Find Full Text PDFPolyinosinic-polycytidylic acid strongly promotes the antitumor activity of NK cells via TLR3/Toll/IL-1R domain-containing adaptor molecule 1 and melanoma differentiation-associated protein-5/mitochondrial antiviral signaling protein pathways. Polyinosinic-polycytidylic acid acts on accessory cells such as dendritic cells (DCs) and macrophages (Mφs) to secondarily activate NK cells. In a previous study in this context, we identified a novel NK-activating molecule, named IFN regulatory factor 3-dependent NK-activating molecule (INAM), a tetraspanin-like membrane glycoprotein (also called Fam26F).
View Article and Find Full Text PDFPoint mutation mice are a key tool in the study of biological functions of genomic DNA sequences and the creation of human disease models. These mice are produced by homologous recombination combined with site-specific recombinase, which allows removal of drug selection cassettes. However, the methods currently available leave ectopic sequences in the "inactive" intron region of the targeted genome in addition to the desired mutation.
View Article and Find Full Text PDFSpermatogonial stem cells (SSCs) are the only stem cells in the body with germline potential, which makes them an attractive target for germline modification. We previously showed the feasibility of homologous recombination in mouse SSCs and produced knockout (KO) mice by exploiting germline stem (GS) cells, i.e.
View Article and Find Full Text PDFVariations in gene promoter/enhancer activity in different muscle fiber types after gene transduction was noticed previously, but poorly analyzed. The murine stem cell virus (MSCV) promoter drives strong, stable gene expression in hematopoietic stem cells and several other cells, including cerebellar Purkinje cells, but it has not been studied in muscle. We injected a lentiviral vector carrying an MSCV-EGFP cassette (LvMSCV-EGFP) into tibialis anterior muscles and observed strong EGFP expression in muscle fibers, primary cultured myoblasts, and myotubes isolated from injected muscles.
View Article and Find Full Text PDFPreeclampsia is a relatively common pregnancy-related disorder. Both maternal and fetal lives will be endangered if it proceeds unabated. Recently, the placenta-derived anti-angiogenic factors, such as soluble fms-like tyrosine kinase-1 (sFLT1) and soluble endoglin (sENG), have attracted attention in the progression of preeclampsia.
View Article and Find Full Text PDFTransgenic and knockout studies have advanced our understanding of the genetic control of embryonic development over the past decades. However, interpretation of the phenotype of mutant mice is potentially complicated, since the commonly used knockout approach modifies both the fetal and placental genome. To circumvent this problem, we previously developed a placenta-specific gene manipulation system by lentiviral vector transduction of embryos at the blastocyst stage.
View Article and Find Full Text PDFThe nonobese diabetic (NOD) mouse is a valuable model for human type 1 diabetes and the development of humanized mice. Although the importance of this mouse strain is widely recognized, its usefulness is constrained by the absence of NOD embryonic stem (ES) lines with adequate germline transmission competence. In the present study, we established two germline transmission-competent types of cell lines from NOD mice; these cell lines, male germline stem (GS) cells and ES cells, were derived from NOD spermatogonia and blastocysts, respectively.
View Article and Find Full Text PDF