Atherosclerotic lesion formation starts during fetal development and progresses with age after adolescence. However, atherogenesis during the juvenile period has not been studied thoroughly. In this study, we examined the atherogenic susceptibility of juvenile rabbits to cholesterol feeding.
View Article and Find Full Text PDFObjective: Lowering the blood concentration of low-density lipoprotein (LDL) cholesterol is the primary strategy employed in treating atherosclerotic disorders; however, most commonly prescribed statins prevent cardiovascular events in just 30% to 40% of treated patients. Therefore, additional treatment is required for patients in whom statins have been ineffective. In this study of atherosclerosis in rabbits, we examined the effect of probucol, a lipid-lowering drug with potent antioxidative effects, added to treatment with atorvastatin.
View Article and Find Full Text PDFBackground: Oxidized phosphatidylcholines (oxPC) and lysophosphatidylcholine (lysoPC) generated during the formation of oxidized low-density lipoprotein (oxLDL) are involved in atherosclerotic lesion development. We investigated the time course-changes in phosphatidylcholine (PC) molecular species during oxidation of LDL to determine how those atherogenic PCs are produced.
Methods: Human and rabbit LDLs were pretreated with or without a selective platelet-activating factor acetylhydrolase (PAF-AH) inhibitor.
Background: Probucol and statin are often prescribed for treating atherosclerosis. These two drugs exhibit different mechanisms but it is unknown whether they have the same anti-atherogenic properties. In the current study, we examined whether these two drugs at optimal doses could inhibit the initiation of atherosclerosis in cholesterol-fed rabbits in the same way.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2013
Objective: Apolipoprotein (apo) A-II is the second major apo of high-density lipoproteins, yet its pathophysiological roles in the development of atherosclerosis remain unknown. We aimed to examine whether apo A-II plays any role in atherogenesis and, if so, to elucidate the mechanism involved.
Methods And Results: We compared the susceptibility of human apo A-II transgenic (Tg) rabbits to cholesterol diet-induced atherosclerosis with non-Tg littermate rabbits.