Publications by authors named "Yuka Kawabata"

Background: Hyperphosphatemia is common in chronic kidney disease and is associated with morbidity and mortality. The intestinal Na-dependent phosphate transporter Npt2b is thought to be an important molecular target for the prevention of hyperphosphatemia. The role of Npt2b in the net absorption of inorganic phosphate (Pi), however, is controversial.

View Article and Find Full Text PDF

[Purpose] Multidisciplinary treatments are recommended for treatment of chronic low back pain. The aim of this study was to show the associations among multidisciplinary treatment outcomes, pretreatment psychological factors, self-reported pain levels, and history of pain in chronic low back pain patients. [Subjects and Methods] A total of 221 chronic low back pain patients were chosen for the study.

View Article and Find Full Text PDF

Previously, we demonstrated that when mesenchymal stem cells (MSCs) from mouse ES cells were transplanted into skeletal muscle, more than 60% of them differentiated into muscles in the crush-injured tibialis anterior muscle in vivo, although MSCs neither differentiated nor settled in the intact muscle. Microenvironments, including the extracellular matrix between the injured and intact muscle, were quite different. In the injured muscle, hyaluronan (HA), heavy chains of inter-α-inhibitor (IαI), CD44, and TNF-α-stimulated gene 6 product (TSG-6) increased 24-48 h after injury, although basement membrane components of differentiated muscle such as perlecan, laminin, and type IV collagen increased gradually 4 days after the crush.

View Article and Find Full Text PDF

Phosphaturic mesenchymal tumor, mixed connective tissue type (PMTMCT) is a rare neoplasm that can cause tumor-induced osteomalacia due to overproduction of a phosphaturic hormone, fibroblast growth factor 23 (FGF23). We report here a case of subcutaneous PMTMCT, non-phosphaturic variant, in the sole. We also review 32 Japanese cases of PMTMCT reported in detail.

View Article and Find Full Text PDF

We recently characterized DahlS.Z-Leprfa/Leprfa (DS/obese) rats, derived from a cross between Dahl salt-sensitive rats and Zucker rats, as a new animal model of metabolic syndrome (MetS). Although the phenotype of DS/obese rats is similar to that of humans with MetS, the pathophysiological and metabolic characteristics in each cell type remain to be clarified.

View Article and Find Full Text PDF

We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation.

View Article and Find Full Text PDF