Tropical cyclone rainfall (TCR) extensively affects coastal communities, primarily through inland flooding. The impact of global climate changes on TCR is complex and debatable. This study uses an XGBoost machine learning model with 19-year meteorological data and hourly satellite precipitation observations to predict TCR for individual storms.
View Article and Find Full Text PDFFixed nitrogen species generated by the early Earth's atmosphere are thought to be critical to the emergence of life and the sustenance of early metabolisms. A previous study estimated nitrogen fixation in the Hadean Earth's N/CO-dominated atmosphere; however, that previous study only considered a limited chemical network that produces NO species (i.e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2023
Nonlinearity in photochemical systems is known to allow self-sustained oscillations, but they have received little attention in studies of planetary atmospheres. Here, we present a unique, self-oscillatory solution for ozone chemistry of an exoplanet from a numerical simulation using a fully coupled, three-dimensional (3D) atmospheric chemistry-radiation-dynamics model. Forced with nonvarying stellar insolation and emission flux of nitric oxide (NO), atmospheric ozone abundance oscillates by a factor of thirty over a multidecadal timescale.
View Article and Find Full Text PDFGlobal Biogeochem Cycles
September 2022
Previous studies suggested that the Amazon, the largest rainforest on Earth, changes from a CO sink to a CO source during the dry/fire season. However, the biospheric contributions to atmospheric CO are not well understood during the two main seasons, the dry/fire season and the wet season. In this article, we utilize Orbiting Carbon Observatory 2 (OCO-2) Solar-Induced Fluorescence (SIF) to explore photosynthetic activity during the different seasons.
View Article and Find Full Text PDFHyperspectral infrared sounding contains information about clouds, which plays an important role in modulating Earth's climate. However, there is a great deal of uncertainty in modeling the radiative effect of clouds due to its complex dependence on various parameters. Therefore, cloudy scenarios are often neglected in retrievals of infrared spectral measurements and in data assimilation.
View Article and Find Full Text PDFWe demonstrate a novel computational architecture based on fluid convection logic gates and heat flux-mediated information flows. Our previous work demonstrated that Boolean logic operations can be performed by thermally driven convection flows. In this work, we use numerical simulations to demonstrate a different , but universal Boolean logic operation (NOR), performed by simpler convective gates.
View Article and Find Full Text PDFPluto, Titan, and Triton make up a unique class of solar system bodies, with icy surfaces and chemically reducing atmospheres rich in organic photochemistry and haze formation. Hazes play important roles in these atmospheres, with physical and chemical processes highly dependent on particle sizes, but the haze size distribution in reducing atmospheres is currently poorly understood. Here we report observational evidence that Pluto's haze particles are bimodally distributed, which successfully reproduces the full phase scattering observations from New Horizons.
View Article and Find Full Text PDFThe large fluctuations in traffic during the COVID-19 pandemic provide an unparalleled opportunity to assess vehicle emission control efficacy. Here we develop a random-forest regression model, based on the large volume of real-time observational data during COVID-19, to predict surface-level NO, O, and fine particle concentration in the Los Angeles megacity. Our model exhibits high fidelity in reproducing pollutant concentrations in the Los Angeles Basin and identifies major factors controlling each species.
View Article and Find Full Text PDFThe abundance of SO dimers (SO) in the upper atmosphere of Venus and their implications for the enigmatic ultraviolet absorption has been investigated in several studies over the past few years. However, the photochemistry of sulfur species in the upper atmosphere of Venus is still not well understood and the identity of the missing ultraviolet absorber(s) remains unknown. Here we update an existing photochemical model of Venus' upper atmosphere by including the photochemistry of SO dimers.
View Article and Find Full Text PDFMetal compounds abundant on Early Earth are thought to play an important role in the origins of life. Certain iron-sulfur minerals for example, are proposed to have served as primitive metalloenzyme cofactors due to their ability to catalyze organic synthesis processes and facilitate electron transfer reactions. An inherent difficulty with studying the catalytic potential of many metal compounds is the wide range of data and parameters to consider when searching for individual minerals and ligands of interest.
View Article and Find Full Text PDFThe absence of motor vehicle traffic and suspended manufacturing during the coronavirus disease 2019 (COVID-19) pandemic in China enabled assessment of the efficiency of air pollution mitigation. Up to 90% reduction of certain emissions during the city-lockdown period can be identified from satellite and ground-based observations. Unexpectedly, extreme particulate matter levels simultaneously occurred in northern China.
View Article and Find Full Text PDFSpatially resolving exoplanet features from single-point observations is essential for evaluating the potential habitability of exoplanets. The ultimate goal of this protocol is to determine whether these planetary worlds harbor geological features and/or climate systems. We present a method of extracting information from multi-wavelength single-point light curves and retrieving surface maps.
View Article and Find Full Text PDFThe formation of ice particles in the atmosphere strongly affects cloud properties and the climate. While mineral dust is known to be an effective ice nucleating particle, the role of aerosols from anthropogenic pollution in ice nucleation is still under debate. Here we probe the ice nucleation ability of different aerosol types by combining 11-year observations from multiple satellites and cloud-resolving model simulations.
View Article and Find Full Text PDFAerosol effects on convective clouds and associated precipitation constitute an important open-ended question in climate research. Previous studies have linked an increase in aerosol concentration to a delay in the onset of rain, invigorated clouds and stronger rain rates. Here, using observational data, we show that the aerosol effect on convective clouds shifts from invigoration to suppression with increasing aerosol optical depth.
View Article and Find Full Text PDFThe direct radiative forcing of black carbon aerosol (BC) on the Earth system remains unsettled, largely due to the uncertainty with physical properties of BC throughout their lifecycle. Here we show that ambient chamber measurements of BC properties provide a novel constraint on the crude BC aging representation in climate models. Observational evidence for significant absorption enhancement of BC can be reproduced when the aging processes in the four-mode version of the Modal Aerosol Module (MAM4) aerosol scheme in the Community Atmosphere Model version 5 are calibrated by the recent in situ chamber measurements.
View Article and Find Full Text PDFRecent measurements of methane (CH) by the Mars Science Laboratory (MSL) now confront us with robust data that demand interpretation. Thus far, the MSL data have revealed a baseline level of CH (∼0.4 parts per billion by volume [ppbv]), with seasonal variations, as well as greatly enhanced spikes of CH with peak abundances of ∼7 ppbv.
View Article and Find Full Text PDFWe quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO) and nitrite (NO) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO and N, will produce nitric oxide (NO) when shocked by lightning.
View Article and Find Full Text PDFThe change of global-mean precipitation under global warming and interannual variability is predominantly controlled by the change of atmospheric longwave radiative cooling. Here we show that tightening of the ascending branch of the Hadley Circulation coupled with a decrease in tropical high cloud fraction is key in modulating precipitation response to surface warming. The magnitude of high cloud shrinkage is a primary contributor to the intermodel spread in the changes of tropical-mean outgoing longwave radiation (OLR) and global-mean precipitation per unit surface warming (dP/dT) for both interannual variability and global warming.
View Article and Find Full Text PDFUnlabelled: The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7 ppb of methane on Mars. This in situ measurement reorients our understanding of the martian environment and its potential for life, as the current theories do not entail any geological source or sink of methane that varies sub-annually.
View Article and Find Full Text PDFObservations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto.
View Article and Find Full Text PDFAerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter.
View Article and Find Full Text PDFThe climate of Mars likely evolved from a warmer, wetter early state to the cold, arid current state. However, no solutions for this evolution have previously been found to satisfy the observed geological features and isotopic measurements of the atmosphere. Here we show that a family of solutions exist, invoking no missing reservoirs or loss processes.
View Article and Find Full Text PDF