Polygenic risk scores (PRS) are becoming increasingly vital for risk prediction and stratification in precision medicine. However, PRS model training presents significant challenges for broader adoption of PRS, including limited access to computational resources, difficulties in implementing advanced PRS methods, and availability and privacy concerns over individual-level genetic data. Cloud computing provides a promising solution with centralized computing and data resources.
View Article and Find Full Text PDFPlasma protein levels provide important insights into human disease, yet a comprehensive assessment of plasma proteomics across organs is lacking. Using large-scale multimodal data from the UK Biobank, we integrated plasma proteomics with organ imaging to map their phenotypic and genetic links, analyzing 2,923 proteins and 1,051 imaging traits across multiple organs. We uncovered 5,067 phenotypic protein-imaging associations, identifying both organ-specific and organ-shared proteomic relations, along with their enriched protein-protein interaction networks and biological pathways.
View Article and Find Full Text PDFAnaplastic lymphoma kinase (ALK) fusion genes promote a variety of human malignancies. Although several ALK inhibitors have significantly improved disease prognosis in patients with ALK positive cancers, the persistent emergence of acquired drug-resistant mutations remain the major problem in clinic treatment. Adoption of new therapeutic strategies such as proteolysis targeting chimera (PROTAC) to overcome drug resistance in BTK/AR-related cancers have shown promising prospect.
View Article and Find Full Text PDFBiochem Biophys Rep
September 2024
Non-alcoholic fatty liver disease (NAFLD) is associated with abnormal bone metabolism, potentially mediated by elevated levels of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-ɑ) and interleukin 6 (IL-6). This study aims to investigate the direct regulatory effects of liver tissues on osteoblast and osteoclast functions , focusing on the liver-bone axis in NAFLD. Twelve-week-old C57BL/6 mice were fed either a control diet or a high-fat diet (HFD) for 12 weeks.
View Article and Find Full Text PDFThe retina, an anatomical extension of the brain, forms physiological connections with the visual cortex of the brain. Although retinal structures offer a unique opportunity to assess brain disorders, their relationship to brain structure and function is not well understood. In this study, we conducted a systematic cross-organ genetic architecture analysis of eye-brain connections using retinal and brain imaging endophenotypes.
View Article and Find Full Text PDFAs large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) interact with RNA and ubiquitously regulate RNA transcripts during their life cycle, playing a fundamental role in the progression of angiogenesis-related diseases. In the skeletal system, endothelium-dependent angiogenesis is indispensable for bone formation. However, the role of RBPs in endothelium-dependent bone formation is unclear.
View Article and Find Full Text PDFAge-associated bone diseases such as osteoporosis (OP) are common in the elderly due to skeletal ageing. The process of skeletal ageing can be accelerated by reduced proliferation and osteogenesis of bone marrow mesenchymal stem cells (BM-MSCs). Senescence of BM-MSCs is a main driver of age-associated bone diseases, and the fate of BM-MSCs is tightly regulated by histone modifications, such as methylation and acetylation.
View Article and Find Full Text PDFSenescence and altered differentiation potential of bone marrow stromal cells (BMSCs) lead to age-related bone loss. As an important posttranscriptional regulatory pathway, alternative splicing (AS) regulates the diversity of gene expression and has been linked to induction of cellular senescence. However, the role of splicing factors in BMSCs during aging remains poorly defined.
View Article and Find Full Text PDFAs an anatomical extension of the brain, the retina of the eye is synaptically connected to the visual cortex, establishing physiological connections between the eye and the brain. Despite the unique opportunity retinal structures offer for assessing brain disorders, less is known about their relationship to brain structure and function. Here we present a systematic cross-organ genetic architecture analysis of eye-brain connections using retina and brain imaging endophenotypes.
View Article and Find Full Text PDFImaging Neurosci (Camb)
September 2023
Functional magnetic resonance imaging (fMRI) has been widely used to identify brain regions linked to critical functions, such as language and vision, and to detect tumors, strokes, brain injuries, and diseases. It is now known that large sample sizes are necessary for fMRI studies to detect small effect sizes and produce reproducible results. Here we report a systematic association analysis of 647 traits with imaging features extracted from resting-state and task-evoked fMRI data of more than 40,000 UK Biobank participants.
View Article and Find Full Text PDFHER2 is a validated therapeutic target for HER2 positive breast cancer and gastric cancer. TKIs have significantly improved the prognosis of patients with HER2 positive cancer. However, the pan-HER TKIs always caused gastrointestinal and skin side effects, and acquired drug resistance inevitable compromised their therapeutic efficacy.
View Article and Find Full Text PDFBoth nuclear receptors glucocorticoid receptor α (GRα) and peroxisome proliferator-activated receptor α (PPARα) are involved in energy and lipid metabolism, and possess anti-inflammation effects. Previous studies indicate that a regulatory loop may exist between them. In vivo and in vitro studies showed that glucocorticoids stimulate hepatic PPARα expression via GRα at the transcriptional level.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2022
Background: Accumulating evidence indicates that high-fat diet (HFD) is a controllable risk factor for osteoporosis, but the underlying mechanism remains to be elucidated. As a primary biological barrier for nutrient entry into the human body, the composition and function of gut microbiota (GM) can be altered rapidly by HFD, which may trigger abnormal bone metabolism. In the current study, we analyzed the signatures of GM and serum metabolomics in HFD-induced bone loss and explored the potential correlations of GM and serum metabolites on HFD-related bone loss.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2022
Objectives: Growing evidence argues for a relationship between liver and bone metabolisms. Sclerostin is a secreted glycoprotein and could antagonize osteoblast-mediated bone formation. Previous studies indicated that circulating sclerostin levels may be associated with metabolic parameters with inconsistent results.
View Article and Find Full Text PDFObesity, a chronic low-grade inflammatory state, not only promotes bone loss, but also accelerates cell senescence. However, little is known about the mechanisms that link obesity, bone loss, and cell senescence. Interleukin-6 (IL-6), a pivotal inflammatory mediator increased during obesity, is a candidate for promoting cell senescence and an important part of senescence-associated secretory phenotype (SASP).
View Article and Find Full Text PDFPurpose: Bone metastasis is the result of complex crosstalk between tumor cells and bone marrow cells. Bone marrow adipocytes (BMAs) are the most abundant cell type in adult bone marrow. Therefore, we explore the effects of BMAs on bone metastasis in lung cancer.
View Article and Find Full Text PDFMucopolysaccharidosis type I (MPSI) is a rare autosomal recessive disorder caused by mutations in alpha-L-iduronidase () gene. contributes to the degradation of the glycosaminoglycans, including heparan sulphate and dermatan sulphate. Deficient activity of IDUA generates accumulation of glycosaminoglycans in lysosomes leading to MPS I.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2019
Bone marrow adipose tissue (MAT) is distinct from white adipose tissue (WAT) or brown adipose tissue (BAT) for its location, feature and function. As a largely ignored adipose depot, it is situated in bone marrow space and resided with bone tissue side-by-side. MAT is considered not only as a regulator of bone metabolism through paracrine, but also as a functionally particular adipose tissue that may contribute to global metabolism.
View Article and Find Full Text PDFBreast cancer is the most common female cancer with considerable metastatic potential, explaining the need for new candidates that inhibit tumor metastasis. In our study, betulinic acid (BA), a kind of pentacyclic triterpenoid compound derived from birch trees, was evaluated for its anti-metastasis activity and . BA decreased the viability of three breast cancer cell lines and markedly impaired cell migration and invasion.
View Article and Find Full Text PDFSichuan Da Xue Xue Bao Yi Xue Ban
September 2016
Objectives: To determine the effect of fibroblast growth factor-21(FGF-21)on the osteogenic differention of human bone mesenchymal stem cells (hBMSCs) exposed to a hyperglycemia condition .
Methods: hBMSCs were isolated from adult bone marrows, and identified by Alizarin red and oil red O staining. The expressions of immunophenotype were analysed using flow cytometry (CD105, CD90, CD73, CD44).