Objective: To conduct an in-depth exploration of the factors influencing unfulfilled needs in caregivers of patients with phenylketonuria.
Methods: A rapid qualitative analysis approach was used to conduct semi-structured interviews with 16 caregivers of patients with phenylketonuria undergoing specialized dietary interventions, along with 5 medical professionals, within a designated phenylketonuria diagnosis and treatment center in Shanxi Province. Interview data were systematically organized, analyzed, and thematically extracted.
Recent studies confirm that nanoplastics (NP) cause severe microbial imbalances in various ecosystems, significantly affecting microbial diversity and abundance. Hydroponic systems vital for lettuce production are increasingly threatened by NP contamination in irrigation water and this issue is gaining global attention. This study investigates microbial species in hydroponic irrigation water altered by NP exposure and their impact on lettuce growth.
View Article and Find Full Text PDFBackground: Oenococcus oeni is a commercial wine-fermenting bacterial strain, owing to its high efficiency of malolactic fermentation and stress tolerance. The present study explored the function of key genes in O. oeni to enhance stress resistance by heterologous expression of these genes in another species.
View Article and Find Full Text PDFAkkermansia muciniphila and Faecalibacterium prausnitzii are next-generation probiotics, which has been reported to protect disease and effectively utilize various carbohydrates (starch and pectin) as nutrients for growth. Atemoya exhibiting fruity flavor, which is suitable for enhancing aroma and attenuating unpleasant taste caused by the koji metabolites. Results indicated that malic acid was increased (from 42.
View Article and Find Full Text PDFThe titer of recombinant proteins is one of the key parameters in biopharmaceutical manufacturing processes. The fluorescence polarization (FP)-based assay, a homogeneous, high-throughput and real-time analytical method, had emerged as a powerful tool for biochemical analysis and environmental monitoring. In this study, an FP-based bioassay was utilized to quantify antibody fragment crystallizable (Fc)-containing proteins, such as recombinant monoclonal antibodies (mAbs) and mAb derivatives, in the cell culture supernatant, and the impacts of tracer molecular weight and FITC-coupling conditions on fluorescence polarization were methodically examined.
View Article and Find Full Text PDFVascular development is a complex multistep process involving the coordination of cellular functions such as migration, proliferation, and differentiation. How mechanical forces generated by cells and transmission of these physical forces control vascular development is poorly understood. Using an endothelial-specific genetic model in mice, we show that deletion of the scaffold protein Angiomotin (Amot) inhibits migration and expansion of the physiological and pathological vascular network.
View Article and Find Full Text PDFObjective: The meta-analysis was conducted to assess the effectiveness and safety of intravenous administration of dexmedetomidine for cesarean section under general anesthesia, as well as neonatal outcomes.
Materials And Methods: We searched PubMed, Embase, Cochrane Central Register of Controlled Trials and the China National Knowledge Infrastructure database for relevant randomized controlled trials (RCTs) about the application of intravenous dexmedetomidine under general anesthesia for cesarean section. RevMan 5.
The assembly of individual epithelial or endothelial cells into a tight cellular sheet requires stringent control of cell packing and organization. These processes are dependent on the establishment and further integration of cellular junctions, the cytoskeleton and the formation of apical-basal polarity. However, little is known how these subcellular events are coordinated.
View Article and Find Full Text PDFTransmission of mechanical force via cell junctions is an important component that molds cells into shapes consistent with proper organ function. Of particular interest are the cadherin transmembrane proteins, which play an essential role in connecting cell junctions to the intra-cellular cytoskeleton. Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving morphogenesis.
View Article and Find Full Text PDFProtein misfolding is implicated in neurodegenerative diseases such as ALS, where mutations of superoxide dismutase 1 (SOD1) account for about 20% of the inherited mutations. Human SOD1 (hSOD1) contains four cysteines, including Cys(57) and Cys(146), which have been linked to protein stability and folding via forming a disulfide bond, and Cys(6) and Cys(111) as free thiols. But the roles of the cellular oxidation-reduction (redox) environment in SOD1 folding and aggregation are not well understood.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AHR) is a transcription factor which activates gene transcription by binding to its corresponding enhancer as the heterodimer, which is consisted of AHR and the aryl hydrocarbon receptor nuclear translocator (ARNT). Human AHR can be rather difficult to study, when compared among the AHR of other species, since it is relatively unstable and less sensitive to some ligands in vitro. Overexpression of human AHR has been limited to the baculovirus expression, which is costly and tedious due to the need of repetitive baculovirus production.
View Article and Find Full Text PDFThioredoxin systems, composed of thioredoxin reductase (TrxR), thioredoxin (Trx) and NADPH, play important roles in maintaining cellular redox homeostasis and redox signaling. Recently the cytosolic Trx1 system has been shown to be a cellular target of arsenic containing compounds. To elucidate the relationship of the structure of arsenic compounds with their ability of inhibiting TrxR1 and Trx1, and cytotoxicity, we have investigated the reaction of Trx1 system with seven arsenic trithiolates: As(Cys)3, As(GS)3, As(Penicillamine)3, As(Mercaptoethanesulfonate)3, As(Mercaptopurine)3, As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3.
View Article and Find Full Text PDFMaternal immunization is successfully applied against some life-threatening infectious diseases as it can protect the mother and her offspring through the passive transfer of maternal antibodies. Here, we sought to evaluate whether the concept of maternal immunization could also be applied to cancer immune-prevention. We have previously shown that antibodies induced by DNA vaccination against rat Her2 (neu) protect heterozygous neu-transgenic female (BALB-neuT) mice from autochthonous mammary tumor development.
View Article and Find Full Text PDFThe establishment and maintenance of apical-basal cell polarity is essential for the functionality of glandular epithelia. Cell polarity is often lost in advanced tumours correlating with acquisition of invasive and malignant properties. Despite extensive knowledge regarding the formation and maintenance of polarity, the mechanisms that deregulate polarity in metastasizing cells remain to be fully characterized.
View Article and Find Full Text PDFThe assembly of individual endothelial cells into multicellular tubes is a complex morphogenetic event in vascular development. Extracellular matrix cues and cell-cell junctional communication are fundamental to tube formation. Together they determine the shape of endothelial cells and the tubular structures that they ultimately form.
View Article and Find Full Text PDFAngiomotin (Amot) is one of several identified angiostatin receptors expressed by the endothelia of angiogenic tissues. We have shown that a DNA vaccine targeting Amot overcome immune tolerance and induce an antibody response that hampers the progression of incipient tumors. Following our observation of increased Amot expression on tumor endothelia concomitant with the progression from pre-neoplastic lesions to full-fledged carcinoma, we evaluated the effect of anti-Amot vaccination on clinically evident tumors.
View Article and Find Full Text PDFAlterations in mitochondrial structure and function are a hallmark of cancer cells compared to normal cells and thus targeting mitochondria has emerged as an novel approach to cancer therapy. The mitochondrial thioredoxin 2 (Trx2) system is critical for cell viability, but its role in cancer biology is not well understood. Recently some cationic triphenylmethanes such as brilliant green (BG) and gentian violet were shown to have antitumor and antiangiogenic activity with unknown mechanisms.
View Article and Find Full Text PDFRationale: We have previously shown that angiomotin (Amot) is essential for endothelial cell migration during mouse embryogenesis. However, approximately 5% of Amot knockout mice survived without any detectable vascular defects. Angiomotin-like protein 1 (AmotL1) potentially compensates for the absence of Amot as it is 62% homologous to Amot and exhibits similar expression pattern in endothelial cells.
View Article and Find Full Text PDFObjective: Angiogenesis and lymphangiogenesis are complex phenomena that involve the interplay of several growth factors and receptors. Recently, we have demonstrated that in Keratin-14 (K14) promoter-driven Vegf-A transgenic (Tg) mice, not only angiogenesis but also lymphangiogenesis is stimulated. However, the mechanism by which VEGFR1 is involved in lymphangiogenesis remains unclear.
View Article and Find Full Text PDFObjective: VEGF-E(NZ7)/PlGF molecules composed of Orf virus-derived VEGF-E(NZ7) and human PlGF1 were previously proven to be potent angiogenic factors stimulating angiogenesis without significant enhancement of vascular leakage and inflammation in vivo. For its future clinical application, there is a pressing need to better understand the beneficial effects of VEGF-E(NZ7)/PlGF during wound healing in adulthood.
Methods And Results: In this study, several angiogenic factors were administrated to skin punched wounds of both wild-type and diabetic mice.
Objective: Vascular endothelial growth factor (VEGF) plays critical roles in the regulation of angiogenesis and lymphangiogenesis. However, tissue edema, hemorrhage, and inflammation occur when VEGF-A is used for angiogenic therapy. To design a novel angiogenic factor without severe side effects, we examined the biological function of chimeric VEGF-E(NZ7)/placental growth factor (PlGF), which is composed of Orf-Virus(NZ7)-derived VEGF-E(NZ7) and human PlGF1, in a transgenic (Tg) mouse model.
View Article and Find Full Text PDFNitrile hydratase (NHase) activator from Rhodococcus sp. N-771 is required for NHase functional expression. The motif 73CXCC76 in the NHase activator sequence was here revealed to be vital for its function by site-directed mutagenesis.
View Article and Find Full Text PDFThe cytoplasmic domain of band 3 (CDB3) offers binding sites for several glycolytic enzymes and regulates the glycolysis of erythrocyte. The interaction between recombinant (His)(6)-tagged CDB3 and aldolase, one of the key enzymes that participated in erythrocyte glycolysis, was investigated in the presence of lanthanide. The results indicate that trace lanthanide blocks the inhibition of CDB3-(His)(6) to aldolase and leads to enhancement of aldolase activity.
View Article and Find Full Text PDF