Publications by authors named "Yujuan Qiao"

Background: The purpose of this study was to explore the prognostic significance of the lesion-specific pericoronary fat attenuation index (FAI) in forecasting major adverse cardiovascular events (MACE) among patients with type 2 diabetes mellitus (T2DM).

Methods: This study conducted a retrospective analysis of 304 patients diagnosed with T2DM who underwent coronary computed tomography angiography (CCTA) in our hospital from December 2011 to October 2021. All participants were followed for a period exceeding three years.

View Article and Find Full Text PDF

Nanochannel technology has emerged as a powerful tool for label-free and highly sensitive detection of protein folding/unfolding status. However, utilizing the inner walls of a nanochannel array may cause multiple events even for proteins with the same conformation, posing challenges for accurate identification. Herein, we present a platform to detect unfolded proteins through electrical and optical signals using nanochannel arrays with outer-surface probes.

View Article and Find Full Text PDF

Functional probes not only at the inner wall but also at the outer surface of nanochannel systems could be used for the recognition and detection of biotargets. Despite the advancements, the current detection mechanisms are still mainly based on the surface charge variation. We proposed a strategy of using the variation of wettability on the outer surface of nanochannels for detecting a tumor marker, herein, exemplifying matrix metalloproteinase-2 (MMP-2).

View Article and Find Full Text PDF

Biological ion channels and ion pumps with sub-nanometer sizes modulate ion transport in response to external stimuli. Realizing such functions with sub-nanometer solid-state nanopores has been an important topic with wide practical applications. Herein, we demonstrate a biomimetic photoresponsive ion channel and photodriven ion pump using a porphyrin-based metal-organic framework membrane with pore sizes comparable to hydrated ions.

View Article and Find Full Text PDF

A smart mixed-dimensional heterogeneous membrane is fabricated, through which the ionic conductance and rectification can be precisely and robustly modulated by visible light of 420 nm wavelength with different power intensities simultaneously. The excellent performance makes it a promising alternative for further applications in nanoconfinement analysis.

View Article and Find Full Text PDF