Viral mimicry driven by endogenous double-stranded RNA (dsRNA) stimulates innate and adaptive immune responses. However, the mechanisms that regulate dsRNA-forming transcripts during cancer therapy remain unclear. Here, we demonstrate that dsRNA is significantly accumulated in cancer cells following pharmacologic induction of micronuclei, stimulating mitochondrial antiviral signaling (MAVS)-mediated dsRNA sensing in conjunction with the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway.
View Article and Find Full Text PDFRECK has been described to modulate extracellular matrix components through negative regulation of MMP activities. Recently, RECK was demonstrated to bind to an orphan G protein-coupled receptor GPR124 to mediate WNT7 signaling in nontumor contexts. Here, we attempted to clarify the role of RECK in driving WNT signaling in cancer cells.
View Article and Find Full Text PDFDouble homeobox 4 () is expressed at the early pre-implantation stage in human embryos. Here we show that induced human expression substantially alters the chromatin accessibility of non-coding DNA and activates thousands of newly identified transcribed enhancer-like regions, preferentially located within ERVL-MaLR repeat elements. CRISPR activation of transcribed enhancers by C-terminal DUX4 motifs results in the increased expression of target embryonic genome activation (EGA) genes and .
View Article and Find Full Text PDFTargeted blockade of programmed cell death 1 (PD-1), an immune-checkpoint receptor that inhibits T cell activation, provides clinical benefits in various cancers. However, how PD-1 modulates gene expression in T cells remains enigmatic. Here we investigated how PD-1 affects transcriptome changes induced by T cell receptor (TCR) activation.
View Article and Find Full Text PDFPromoters and enhancers are key cis-regulatory elements, but how they operate to generate cell type-specific transcriptomes is not fully understood. We developed a simple and robust method, native elongating transcript-cap analysis of gene expression (NET-CAGE), to sensitively detect 5' ends of nascent RNAs in diverse cells and tissues, including unstable transcripts such as enhancer-derived RNAs. We studied RNA synthesis and degradation at the transcription start site level, characterizing the impact of differential promoter usage on transcript stability.
View Article and Find Full Text PDFColorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Several genome sequencing studies have provided comprehensive CRC genomic datasets. Likewise, in our previous study, we performed genome-wide transposon-based mutagenesis screening in mice and provided comprehensive datasets of candidate CRC driver genes.
View Article and Find Full Text PDFWe established an in vitro cell culture system to determine novel activities of the retinoblastoma (Rb) protein during tumor progression. Rb depletion in p53-null mouse-derived soft tissue sarcoma cells induced a spherogenic phenotype. Cells retrieved from Rb-depleted spheres exhibited slower proliferation and less efficient BrdU incorporation, however, much higher spherogenic activity and aggressive behavior.
View Article and Find Full Text PDFVascular endothelial cells produce considerable amounts of matrix metalloproteinases (MMP), including MMP-2, MMP-9, and membrane type 1 (MT1)-MMP. However, little is known about the regulatory mechanisms of these protease activities exhibited during vascular development. A glycosylphosphatidylinositol-anchored glycoprotein, reversion-inducing cysteine-rich protein with Kazal motifs (RECK), has been shown to attenuate MMP-2 maturation by directly interacting with MT1-MMP.
View Article and Find Full Text PDFOncogene-induced cellular senescence is well documented, but little is known about how infinite cell proliferation induced by loss of tumor suppressor genes is antagonized by cellular functions. Rb heterozygous mice generate Rb-deficient C cell adenomas that progress to adenocarcinomas following biallelic loss of N-ras. Here, we demonstrate that pRb inactivation induces aberrant expression of farnesyl diphosphate synthase, many prenyltransferases, and their upstream regulators sterol regulatory element-binding proteins (SREBPs) in an E2F-dependent manner, leading to enhanced isoprenylation and activation of N-Ras.
View Article and Find Full Text PDFWe report that during cortical development in the mouse embryo, reversion-inducing cysteine-rich protein with Kazal motifs (RECK) critically regulates Notch signaling by antagonizing the ectodomain shedding of Notch ligands, which is mediated by a disintegrin and metalloproteinase domain 10 (ADAM10). In the embryonic brain, RECK is specifically expressed in Nestin-positive neural precursor cells (NPCs). Reck-deficient NPCs undergo precocious differentiation that is associated with downregulated Nestin expression, impaired Notch signaling and defective self-renewal.
View Article and Find Full Text PDFThe reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is anchored to the cell surface via glycosylphosphatidylinositol. This molecule antagonizes the function of membrane type 1 matrix metalloproteinase (MT1-MMP) to promote proMMP-2 maturation. Here, we attempt to clarify the mechanism underlying RECK functions.
View Article and Find Full Text PDFMutations in the gene encoding the retinoblastoma tumor suppressor predispose humans and mice to tumor development. Here we have assessed the effect of Nras loss on tumor development in Rb1 heterozygous mice. Loss of one or two Nras alleles is shown to significantly reduce the severity of pituitary tumors arising in Rb1(+/-) animals by enhancing their differentiation.
View Article and Find Full Text PDF