Publications by authors named "Yujing Zheng"

Advanced reduction processes (ARPs) have become hotspot because of their fast and efficient features in pollutant treatment. In this study, a novel ARP was raised through the assistance of biological wastewater degradation solutions (PDs), to completely reduce Cr(VI). Enterobacter cloacae YN-4, which could completely degrade 1500 mg/L phenol within 72 h, was isolated and identified.

View Article and Find Full Text PDF

Ripening is one of the most important stages of fruit development and determines the fruit quality. Various factors play a role in this process, with epigenetic mechanisms emerging as important players. Epigenetic regulation encompasses DNA methylation, histone modifications and variants, chromatin remodeling, RNA modifications, and non-coding RNAs.

View Article and Find Full Text PDF

Composite materials have occupied a reliable position in electrochemical energy storage and conversion due to their double electric layer and pseudocapacitance. In this work, a leaf-like heterostructure composite, obtained by peeling - carbonizing - in situ sulfuration/oxidation approach for the first time, is investigated as electrode material for electrochemical capacitance behavior. The thin and highly active transition metal WS acts as an energetic "blade" to trap free ions, which are then transported across the material through a strong "tendon skeleton" WO.

View Article and Find Full Text PDF

Aging is associated with gradual changes in liver structure, altered metabolites and other physiological/pathological functions in hepatic cells. However, its characterized phenotypes based on altered metabolites and the underlying biological mechanism are unclear. Advancements in high-throughput omics technology provide new opportunities to understand the pathological process of aging.

View Article and Find Full Text PDF

Phenol is a serious pollutant to the environment, therefore, it is urgent to find a rapid and effective method for its removal. In this study, Bacillus cereus ZWB3 immobilized on a polyurethane (PUF) carrier was studied. The PUF-ZWB3 required only 20 h for the degradation of 1,500 mg L of phenol, shortened by 8 h than the free bacteria.

View Article and Find Full Text PDF

The current review aimed to pool real-world evidence on the efficacy and toxicity of consolidation durvalumab for stage III unresectable non-small cell lung cancer (NSCLC) after curative chemoradiotherapy. PubMed, CENTRAL, ScienceDirect, Embase, and Google Scholar were searched for observational studies reporting the use of durvalumab for NSCLC till 12th April 2022. Twenty-three studies with 4,400 patients were included.

View Article and Find Full Text PDF

Niobium-tungsten bimetal oxides have received wide attention due to their excellent lattice properties. In this work, NbWO(NbWO) with a tetragonal tungsten bronze structure was synthesized by simple hydrothermal method. NbWO was modified to provide high specific surface area via combining with hollow carbon nanotubes.

View Article and Find Full Text PDF

An supramolecular self-assembly in the subcellular organelles could provide a new strategy to treat diseases. Herein, we report a protonation-activated supramolecular self-assembly system in the lysosomes, which could destabilize the lysosome membrane, resulting in the selective suppression of cancer cells. In this system, pyridyl-functionalized tetraphenylethylene (TPE-Py) was protonated in the lysosomes of A549 lung cancer cells to form octahedron-like structures with cucurbit[8]uril (CB[8]), which impaired the integrity of the lysosome membrane, resulting in selective suppression of cancer cells.

View Article and Find Full Text PDF

Pyroptosis provides a new window for relieving the tumor immunosuppressive microenvironment (TIM) and promoting systemic immune responses for tumor treatments. However, gasdermin D (GSDMD), a key protein in the pyroptosis process mediated by caspase-1, is low expressed in the majority of tumor cells and small-molecule inhibitors of DNA methylation suffer from nonspecific or single-function defects. To address these issues, hexahistidine (His)-metal assembly (HmA) was employed as the drug delivery vector to load nigericin (Nig) and decitabine (DAC) affording a dual-drug delivery system (Nig + DAC)@HmA.

View Article and Find Full Text PDF

Diabetic cardiovascular complication is a common systemic disease with high morbidity and mortality worldwide. We hypothesise that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exos) can rescue these disorders and alleviate vascular remodeling in diabetes. Morphological, non-targeted metabolomics and 4D label-free proteomics techniques were used to analyze the aortas of db/m mice as normal control group (NCA), saline treated db/db mice (DMA), and hUCMSCs-exos treated db/db mice (DMTA), and to clarify the molecular mechanism of the protection of hUCMSCs-exos in vascular remodeling from a new point of view.

View Article and Find Full Text PDF

Herein, bromo-naphthol derivatives were synthesized to investigate the influence on their phosphorescence emission efficiency resulting from different binding models with cyclodextrins. And the results indicated that α-cyclodextrin could result in the highest phosphorescence emission efficiency, due to the tight encapsulation of the bromo-naphthol motif into the cavity.

View Article and Find Full Text PDF

Lacrimal plug is an effective and widely therapeutic strategy to treat dry eye. However, almost all commercialized plugs are fixed in a certain design and associated with many complications, such as spontaneous plug extrusion, epiphora, and granuloma and cannot be traced in the long-term. Herein, a simple in situ forming hydrogel is developed as a tracer and degradable lacrimal plug to achieve the best match with the irregular lacrimal passages.

View Article and Find Full Text PDF

M1 macrophage accumulation and excessive inflammation are commonly encountered issues in diabetic wounds and can fail in the healing process. Hence, hydrogel dressings with immunoregulatory capacity have great promise in the clinical practice of diabetic wound healing. However, current immunoregulatory hydrogels are always needed for complex interventions and high-cost treatments, such as cytokines and cell therapies.

View Article and Find Full Text PDF

As an ion-embedded material with small strain and low transport energy barrier, the limited ion transport rate and conductivity of niobium pentaoxide (Nb O ) are the main factors limiting its application in lithium/sodium storage systems. In this work, the microsphere composites (N-Nb O @CNTs) are prepared by combining Nb O , rich in nitrogen doping and vacancy defects, with carbon nanotubes (CNTs) penetrating the bulk phase. With the capillary effect, CNTs can enable the rapid electrolyte infiltration into the microspheres, thus shorting the Li /Na transport path.

View Article and Find Full Text PDF

Interface protection and kinetics optimization could effectively relieve the shortcomings of bimetallic oxides, such as low conductivity, strong hydrophobicity, insufficient ion diffusion rate and metal interatomic instability. In this work, ultrathin amorphous carbon shells and lattice defects (heteroatoms and vacancies) are introduced into the MnNbO nanofiber surface to improve the electron/ion kinetic stability, conductivity and electrochemical activity. The ultrathin carbon interface protects unstable lattice with defects, thus restraining the adverse reaction between bimetallic oxides and electrolyte.

View Article and Find Full Text PDF

Zinc/Zn(II) is an essential trace element for humans and acts as an important substance that maintains the normal growth, development, and metabolism of the body. Excess or deficient Zn(II) can cause abnormal metabolism in the human body, leading to a series of diseases. Moreover, biosystems have complex homeostasis systems, especially harsh pH (OH) environments.

View Article and Find Full Text PDF