Publications by authors named "Yujie Luo"

As the first T cell immunoglobulin mucin (Tim) family member to be identified, Tim-3 is a powerful immune checkpoint that functions in immunoregulation and induction of tolerance. Conventionally, Tim-3 is considered to play a role in adaptive immunity, especially in helper T cell-mediated immune responses. As researches progress, Tim-3 has been detected in a wider range of cell types, modulating cell function through ligand-receptor interactions and other pathways.

View Article and Find Full Text PDF

Eco-friendly Sn-based perovskites show significant potential for high-performance second near-infrared window light-emitting diodes (900 nm - 1700 nm). Nevertheless, achieving efficient and stable Sn-based perovskite second near-infrared window light-emitting diodes remains challenging due to the propensity of Sn to oxidize, resulting in detrimental Sn-induced defects and compromised device performance. Here, we present a targeted strategy to eliminate Sn-induced defects through moisture-triggered hydrolysis of tin tetrahalide, without degrading Sn in the CsSnI film.

View Article and Find Full Text PDF

Background: Loss of volume in the temples is an early sign of aging and often gives the impression of a gaunt and emaciated appearance.

Objective: The authors conduct a clinical study to investigate the safety and effectiveness of the amino acid crosslinked hyaluronic acid (ACHA) for the treatment of temple hollowing.

Methods: 75 subjects with Temple Hollowing Scale (THS) from 2 to 4 were enrolled and assigned according to the ratio of 2 (ACHA group, n = 50): 1 (no treatment control group, n = 25).

View Article and Find Full Text PDF

A cluster of metabolic changes occur to provide energy for fetal growth and development during pregnancy. There is a burgeoning body of research highlighting the pivotal role of circadian rhythms in the pathogenesis of metabolic disorders and lipid homeostasis in mammals. Perturbations of the circadian system and lipid metabolism during gestation might be responsible for a variety of adverse reproductive outcomes comprising miscarriage, gestational diabetes mellitus, and preeclampsia.

View Article and Find Full Text PDF
Article Synopsis
  • Brucellosis is an infectious disease treated mainly with antibacterial drugs, but these drugs often struggle to enter and work effectively inside cells due to cell membrane barriers.
  • Researchers have created a nanogel that includes an antibacterial drug and is enhanced with folic acid for better targeting, which activates in response to reactive oxygen species (ROS) and utilizes heat to improve drug release.
  • The nanogel has been shown to significantly improve killing effects against Brucella bacteria compared to using the drug alone, achieving a 99.8% bacteriostatic rate while maintaining good biocompatibility.
View Article and Find Full Text PDF

With the escalating prevalence of terrorism and global environmental pollution, nitroaromatic compounds (NACs) have increasingly come into focus as the primary culprit. To counter these challenges, it is imperative to develop simple and efficient methods for detecting NACs. Considering the electron-deficient structure of NAC molecules, this paper constructed a novel three-dimensional In-MOF with permanent porosity using electron-rich organic molecules 4'-[1,2,2-tris(3',5'-dicarboxy[1,1'-biphenyl]-4-yl)ethenyl]-[1,1'-biphenyl]-3,5-dicarboxylic acid (HETTB) for fluorescence detection by photoinduced electron transfer.

View Article and Find Full Text PDF

Metal organic frameworks (MOFs) constructed with bismuth metal have not been widely reported, especially multifunctional Bi-MOFs. Therefore, developing multifunctional MOFs is of great significance due to the increasing requirements of materials. In this work, a 3D Bi-MOF (Bi-TCPE) with multifunctionality was successfully constructed, demonstrating high thermal stability, water stability, a porous structure, and strong blue fluorescence emission.

View Article and Find Full Text PDF

Background: This study aims to explore machine learning(ML) methods for non-invasive assessment of WHO/ISUP nuclear grading in clear cell renal cell carcinoma(ccRCC) using contrast-enhanced ultrasound(CEUS) radiomics.

Methods: This retrospective study included 122 patients diagnosed as ccRCC after surgical resection. They were divided into a training set (n = 86) and a testing set(n = 36).

View Article and Find Full Text PDF

Atherigona orientalis Schiner (1868) is an acknowledged agricultural pest owing to its feeding habits and breeding locations. This insect is a tropical and subtropical pest in fruits and vegetables, in which >50 varieties of fruits and vegetables in 26 families, such as Capsicum annuum, Lycopersicon esculentum, and Cucumis melo have been attacked. Moreover, A.

View Article and Find Full Text PDF

Survival of olfactory mucosal mesenchymal stem cells (OM-MSCs) remains the low level in the cerebral microenvironment during intracerebral hemorrhage (ICH). This article aims to reveal the differential expression profile of ICH-stimulated OM-MSCs based on whole transcriptome sequence analysis. OM-MSCs were isolated from 6-week C57BL/6 mice.

View Article and Find Full Text PDF

OTUD6A is a deubiquitinase that plays crucial roles in various human diseases. However, the precise regulatory mechanism of OTUD6A remains unclear. In this study, we found that OTUD6A significantly inhibited the production of type I interferon.

View Article and Find Full Text PDF
Article Synopsis
  • A quick response of antiviral genes is essential for fighting off viruses, which depends on activated transcription factors and open chromatin for effective gene transcription.
  • XAF1 was identified as a key player that helps regulate chromatin accessibility during viral infections by de-repressing chromatin and facilitating the induction of antiviral genes.
  • Mice lacking XAF1 showed vulnerability to RNA viruses, highlighting its critical role in enhancing antiviral immunity through chromatin remodeling.
View Article and Find Full Text PDF

Identifying the HER2 status of breast cancer patients is important for treatment options. Previous studies have shown that ultrasound features are closely related to the subtype of breast cancer. In this study, we used features of conventional ultrasound and ultrasound elastography to predict HER2 status.

View Article and Find Full Text PDF

Objective: Osteoarthritis is a condition characterized by articular cartilage degradation. The increased expression of β1,4-Galactosyltransferase-I (β1,4-GalT-I) in the articular cartilage of osteoarthritis patients was related to an inflammatory response. The aim of this study was to elucidate the role of β1,4-GalT-I in osteoarthritis.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) have demonstrated over 25% power conversion efficiency (PCE) via efficient surface passivation. Unfortunately, state-of-the-art perovskite post-treatment strategies can solely heal the top interface defects. Herein, an ion-diffusion management strategy is proposed to concurrently modulate the top interfaces, buried interfaces, and bulk interfaces (i.

View Article and Find Full Text PDF

Constructing 2D/3D perovskite heterojunctions is effective for the surface passivation of perovskite solar cells (PSCs). However, previous reports that studying perovskite post-treatment only physically deposits 2D perovskite on the 3D perovskite, and the bulk 3D perovskite remains defective. Herein, we propose Cl-dissolved chloroform as a multifunctional solvent for concurrently constructing 2D/3D perovskite heterojunction and inducing the secondary growth of the bulk grains.

View Article and Find Full Text PDF

Background And Objective: Astrocytes play an important role in healthy brain function, including the development and maintenance of blood-brain barrier (BBB), structural support, brain homeostasis, neurovascular coupling and secretion of neuroprotective factors. Reactive astrocytes participate in various pathophysiology after subarachnoid hemorrhage (SAH) including neuroinflammation, glutamate toxicity, brain edema, vasospasm, BBB disruption, cortical spreading depolarization (SD).

Methods: We searched PubMed up to 31 May, 2022 and evaluated the articles for screening and inclusion for subsequent systemic review.

View Article and Find Full Text PDF

Backgroud: The frequencies of morbidity and impairment associated with spontaneous intracerebral haemorrhage (ICH) are comparatively high. Blood-brain barrier (BBB) integrity was compromised due to subsequent brain injury induced by ICH, which is crucial for a poor prognosis. Polymorphonuclear leukocyte (PMN) strongly modulate the disruption of BBB in the central nervous system (CNS).

View Article and Find Full Text PDF

Wide-bandgap (WBG) perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large open-circuit voltage (V) deficits, limiting their photovoltaic performance. Here, we address these issues by in-situ forming a well-defined 2D perovskite (PMA)PbCl (phenmethylammonium is referred to as PMA) passivation layer on top of the WBG active layer. The 2D layer with highly pure dimensionality and halide components is realized by intentionally tailoring the side-chain substituent at the aryl ring of the post-treatment reagent.

View Article and Find Full Text PDF

Sleep monitoring typically requires the uncomfortable and expensive polysomnography (PSG) test to determine the sleep stages. Body movement and cardiopulmonary signals provide an alternative way to perform sleep staging. In recent years, long-short term memory (LSTM) networks and convolutional neural networks (CNN) have dominated automatic sleep staging due to their better learning ability than machine learning classifiers.

View Article and Find Full Text PDF

Background: The CRISPR-Cas13 system is an RNA-guided RNA-targeting system and has been widely used in transcriptome engineering with potentially important clinical applications. However, it is still controversial whether Cas13 exhibits collateral activity in mammalian cells.

Results: Here, we find that knocking down gene expression using RfxCas13d in the adult brain neurons caused death of mice, which may result from the collateral activity of RfxCas13d rather than the loss of target gene function or off-target effects.

View Article and Find Full Text PDF

A dual-loaded multi-targeted drug delivery nanosystem was constructed to simultaneously load paclitaxel (PTX) and 5-fluorouracil (5-FU) for targeted delivery and sustained release at tumor sites. Hollow mesoporous silica nanoparticles (HMSNs) were prepared by the inverse microemulsion method, then modified with folic acid and pH- and temperature-responsive materials, co-loaded with PTX and 5-FU, and finally encapsulated into lipid membranes. The obtained nanosystem was selectively internalized by human breast cancer MCF-7 cells that overexpress folate receptors through an energy-dependent process, and it released both drugs in a simulated tumor microenvironment.

View Article and Find Full Text PDF

NLRP3 inflammasomes have been reported to be an essential mediator in the inflammatory response during early brain injury (EBI) following subarachnoid hemorrhage (SAH). Recent studies have indicated that NLRP3 inflammasome-mediated pyroptosis and long non-coding RNA (lncRNA) H19 can participate in the inflammatory response. However, the roles and functions of lncRNA H19 in NLRP3 inflammasome-mediated pyroptosis during EBI after SAH are unknown and need to be further elucidated.

View Article and Find Full Text PDF

The relativistic charge carriers in monolayer graphene can be manipulated in manners akin to conventional optics. Klein tunneling and Veselago lensing have been previously demonstrated in ballistic graphene pn-junction devices, but collimation and focusing efficiency remains relatively low, preventing realization of advanced quantum devices and controlled quantum interference. Here, we present a graphene microcavity defined by carefully-engineered local strain and electrostatic fields.

View Article and Find Full Text PDF

Waves impart momentum and exert force on obstacles in their path. The transfer of wave momentum is a fundamental mechanism for contactless manipulation, yet the rules of conventional scattering intrinsically limit the radiation force based on the shape and the size of the manipulated object. Here, we show that this intrinsic limit can be broken for acoustic waves with subwavelength-structured surfaces (metasurfaces), where the force becomes controllable by the arrangement of surface features, independent of the object's overall shape and size.

View Article and Find Full Text PDF