Understanding the neuropathogenesis of impaired social cognition in autism spectrum disorders (ASD) is challenging. Altered cortical parvalbumin-positive (PV) interneurons have been consistently observed in ASD, but their roles and the underlying mechanisms remain poorly understood. In our study, we observed a downward-shifted spectrum of PV expression in the developing medial prefrontal cortex (mPFC) of ASD mouse models due to decreased activity of PV neurons.
View Article and Find Full Text PDFMetabotropic glutamate receptor 2 (GRM2) is highly expressed in hippocampal dentate granule cells (DGCs), regulating synaptic transmission and hippocampal functions. Newborn DGCs are continuously generated throughout life and express GRM2 when they are mature. However, it remained unclear whether and how GRM2 regulates the development and integration of these newborn neurons.
View Article and Find Full Text PDFEarly sensory experiences interact with genes to shape precise neural circuits during development. This process is vital for proper brain function in adulthood. Neurological dysfunctions caused by environmental alterations and/or genetic mutation may share the same molecular or cellular mechanisms.
View Article and Find Full Text PDFHippocampal neurogenesis declines with aging. Wnt ligands and antagonists within the hippocampal neurogenic niche regulate the proliferation of neural progenitor cells and the development of new neurons, and the changes of their levels in the niche mediate aging-associated decline of neurogenesis. We found that RNA-binding protein LIN28A remained existent in neural progenitor cells and granule neurons in the adult hippocampus and that it decreased with aging.
View Article and Find Full Text PDFDuring postnatal development, sensory experience shapes the organization and function of cortical circuits. Previous studies focusing on experience-dependent plasticity of neurons have revealed a variety of mechanisms underlying cortical circuit rewiring. Emerging evidence shows that astrocytes play important roles in shaping cortical circuits through extensive interactions with different types of neurons and other glia cells.
View Article and Find Full Text PDF