Publications by authors named "Yujian Jin"

Piperlongumine (PLM), a natural compound isolated from long peppers, has been reported to possess multiple pharmacological roles, including anti-tumor and anti-diabetic. However, the pharmacological role of PLM on adipogenesis is still unknown. In this study, we found that PLM strongly inhibited 3T3-L1 adipocyte differentiation.

View Article and Find Full Text PDF

Improving green total factor productivity (GTFP) is a fundamental solution to help the strategic mineral industry to achieve green and sustainable development. This study incorporates the dual negative externalities of resource depletion and environmental pollution into the GTFP measurement to capture the 'green' elements. By employing a truncated third-order (TTO) translog cost function and the feasible generalized least squares (FGLS) approach, we evaluate the GTFP growth performance and its components in China's strategic minerals industry from 1998 to 2017.

View Article and Find Full Text PDF

Background: Plant phenology has crucial biological, physical, and chemical effects on the biosphere. Phenological drivers have largely been studied, but the role of plant microbiota, particularly rhizosphere microbiota, has not been considered.

Results: We discovered that rhizosphere microbial communities could modulate the timing of flowering of Arabidopsis thaliana.

View Article and Find Full Text PDF

A better knowledge of the intertwined effects of herbicides on plant physiology and microbiome as well as nutrient biogeochemical cycles are needed for environmental management. Here we studied the influence of herbicide diclofop-methyl (DM) on the rice root microbiome and its relationship with N cycle. To do so, we exposed rice seedlings to 100 μg/L DM and studied rhizosphere microbiota using MiSeq-pyrosequencing, root exudation by GC-MS, and denitrification activity by N isotope-tracing and qRT-PCR.

View Article and Find Full Text PDF

Nano-aluminium oxide (nAlO) is one of the most widely used nanomaterials. However, nAlO toxicity mechanisms and potential beneficial effects on terrestrial plant physiology remain poorly understood. Such knowledge is essential for the development of robust nAlO risk assessment.

View Article and Find Full Text PDF

Three ecotypes of Arabidopsis thaliana, ecotype Columbia (Wild type, Wt) and two mutants (pgr5 and ndf4), were used to evaluate the effects of diuron on photosynthetic activity of A. thaliana. It was found that diuron adversely affected the fresh weight and chlorophyll content of the plants.

View Article and Find Full Text PDF

Diclofop-methyl (DM), a widely used herbicide in food crops, may partly contaminate the soil surface of natural ecosystems in agricultural area and exert toxic effects at low dose to nontarget plants. Even though rhizosphere microorganisms strongly interact with root cells, little is known regarding their potential modulating effect on herbicide toxicity in plants. Here we exposed rice seedlings (Xiushui 63) to 100μg/L DM for 2 to 8days and studied the effects of DM on rice rhizosphere microorganisms, rice systemic acquired resistance (SAR) and rice-microorganisms interactions.

View Article and Find Full Text PDF

Chiral herbicides are often used in agriculture as racemic mixtures, although studies have shown that the fate and toxicity of herbicide enantiomers to target and non-target plants can be enantioselective and that herbicide toxicity can be mediated by only one enantiomer. If one enantiomer is active against the target plant, the use of enantiomer-rich herbicide mixtures instead of racemic herbicides could decrease the amount of herbicide applied to a crop and the cost of herbicide application, as well as unintended toxic herbicide effects in the environment. Such a change in the management of herbicide applications requires in-depth knowledge and a critical analysis of the fate and effects of herbicide enantiomers in the environment.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) can be toxic for cyanobacteria when present at low nanomolar concentrations, but the molecular mechanisms whereby AgNPs (or free Ag(+) released from AgNPs) interact with these prokaryotic algal cells remain elusive. Here, we studied Ag uptake mechanisms in the prokaryotic cyanobacterium Microcystis aeruginosa exposed to AgNPs by measuring growth inhibition in the absence or presence of high-affinity Ag-binding ligands and by genetic transformation of E. coli with a protein predicted to be involved in Ag uptake.

View Article and Find Full Text PDF

Photosynthesis is a very important metabolic pathway for plant growth and crop yield. This report investigated the effect of the herbicide imazethapyr on photosynthesis in the Arabidopsis thaliana pnsB3 mutant (a defect in the NDH pathway) and pgr5 mutant (a defect in the PGR5 pathway) to determine which cyclic electron transport chain (CET) of the NDH and PGR5 pathways is more important for protecting the photosynthetic system under herbicide stress. The results showed that 20 μg/L imazethapyr markedly inhibited the growth of the three ecotypes of A.

View Article and Find Full Text PDF

Both 2-[(2,4-dichlorophenoxy)acetoxy](methy)lmethyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIa) and 2-[(4-chloro-2-methyl-phenoxy)-acetoxy](methyl)methyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIr) are novel herbicide candidates that positively affect herbicidal activity via the introduction of a phosphorus-containing heterocyclic ring. This report investigated the mechanism of IIa and IIr on weed control in the model plant Arabidopsis thaliana at physiological, ultrastructural and molecular levels. IIa and IIr significantly inhibited the growth of A.

View Article and Find Full Text PDF

The xFe2O3/yBiOCl composites (xFe/yBi, x/y = 0/100, 5/100, 10/100, 20/100, 30/100 and 40/100 molar ratios) are prepared for the first time through an in situ hydrolysis method under hydrothermal conditions. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and UV-visible diffuse reflectance spectroscopy (UV-DRS). The photodegradation performances of the xFe/yBi samples are investigated using a simulated industrial wastewater mixture containing both rhodamine B (RhB) and methyl orange (MO).

View Article and Find Full Text PDF

In order to efficiently degrade organic pollutants via an easily operated method, Ce-doped MoO3 (Ce(x)/MoO3) samples are synthesized by a simple impregnation method. The samples are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), nitrogen sorption isotherms and UV-vis diffused reflectance spectra (UV-DRS), total organic carbon (TOC), infrared spectroscopy (IR) and mass spectrometry (MS) analyses. Furthermore, we have mainly investigated the degradation of different dye pollutants by the Ce(x)/MoO3 samples, including cationic methylene blue (MB), anionic methyl orange (MO), neutral phenol, and a MB-MO mixture dye.

View Article and Find Full Text PDF