Publications by authors named "Yujia Lan"

Background: Cellular states of different immune cells can affect the activity of the whole immune microenvironment.

Methods: Here, leveraging reference profiles of microenvironment cell states that were constructed based on single-cell RNA-seq data of melanoma, we dissected the composition of microenvironment cell states across 463 skin cutaneous melanoma (SKCM) bulk samples through CIBERSORT-based deconvolution of gene expression profiles and revealed high heterogeneity of their distribution. Correspondence analysis on the estimated cellular fractions of melanoma bulk samples was performed to identify immune phenotypes.

View Article and Find Full Text PDF

High heterogeneity in genome and phenotype of cancer populations made it difficult to apply population-based common driver genes to the diagnosis and treatment of cancer individuals. Characterizing and identifying the personalized driver mechanism for glioblastoma multiforme (GBM) individuals were pivotal for the realization of precision medicine. We proposed an integrative method to identify the personalized driver gene sets by integrating the profiles of gene expression and genetic alterations in cancer individuals.

View Article and Find Full Text PDF

The clonal mutations in driver genes enable cells to gradually acquire growth advantage in tumor development. Therefore, revealing the functions of clonal driver gene mutations is important. Here, we proposed the method FCMP that considered evolutionary dependencies to analyze the functions of clonal driver gene mutations in a single patient.

View Article and Find Full Text PDF

Objectives: Systematically identifying cancer cell functional states, especially their associations, is key to understanding the pathogenesis of cancers.

Materials And Methods: Here, we systematically identified six cancer-related states, including epithelial-mesenchymal transition (EMT), immune response, epithelial differentiation, stress, G1/S and G2/M phases, in head and neck squamous cell carcinoma (HNSCC) based on single-cell RNA-sequencing (scRNA-seq).

Results And Conclusion: We defined the association patterns between these functional states and found the patterns were correlated with the state activity.

View Article and Find Full Text PDF

Tumors are genetically heterogeneous and many mutations are actually present in subclonal populations. The clonal status of mutations is valuable for accurate prognosis, clinical management. The aim of this study was to identify the clonal status of somatic mutations and systematically evaluate their prognostic values across various cancer types.

View Article and Find Full Text PDF

Interaction between tumor cells and immune cells determined highly heterogeneous microenvironments across patients, leading to substantial variation in clinical benefits from immunotherapy. Somatic gene mutations were found not only to elicit adaptive immunity but also to influence the composition of tumor immune microenvironment and various processes of antitumor immunity. However, due to an incomplete view of associations between gene mutations and immunophenotypes, how tumor cells shape the immune microenvironment and further determine the clinical benefit of immunotherapy is still unclear.

View Article and Find Full Text PDF

Somatic mutations accumulate over time in cancer cells as a consequence of mutational processes. However, the role of mutational processes in carcinogenesis remains poorly understood. Here, we infer the causal relationship between mutational processes and somatic mutations in 5,828 samples spanning 34 cancer subtypes.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is a highly, malignant tumor of the primary central nervous system. Patients diagnosed with this type of tumor have a poor prognosis. Lymphocyte activation plays important roles in the development of cancers and its therapeutic treatments.

View Article and Find Full Text PDF

Axillary strategy decisions have become more complex and controversial in considering minimally traumatic therapy instead of sentinel lymph node biopsy, axillary lymph node dissection or regional nodal irradiation for people with breast cancer. The purpose of this study was to noninvasively predict sentinel lymph node (SLN) and non-sentinel lymph node (NSLN) status based on pre-operative sonographic and clinicopathologic features to determine optimal decisions regarding axillary therapy. In total, 701 patients with breast cancer from two independent centers were retrospectively analyzed.

View Article and Find Full Text PDF

Somatic copy-number alterations (SCNAs) are major contributors to cancer development that are pervasive and highly heterogeneous in human cancers. However, the driver roles of SCNAs in cancer are insufficiently characterized. We combined network propagation and linear regression models to design an integrative strategy to identify driver SCNAs and dissect the functional roles of SCNAs by integrating profiles of copy number and gene expression in lower-grade glioma (LGG).

View Article and Find Full Text PDF

Background: Lung adenocarcinoma (LUAD), as the most common subtype of lung cancer, is the leading cause of cancer deaths in the world. The accumulation of driver gene mutations enables cancer cells to gradually acquire growth advantage. Therefore, it is important to understand the functions and interactions of driver gene mutations in cancer progression.

View Article and Find Full Text PDF

Introduction: The axillary lymph node (ALN) status of breast cancer patients is an important prognostic indicator. The use of primary breast mass features for the prediction of ALN status is rare. Two nomograms based on preoperative ultrasound (US) images of breast tumors and ALNs were developed for the prediction of ALN status.

View Article and Find Full Text PDF

Glioblastoma (GBM) is characterized by rapid and lethal infiltration of brain tissue, which is the primary cause of treatment failure and deaths for GBM. Therefore, understanding the molecular mechanisms of tumor cell invasion is crucial for the treatment of GBM. In this study, we dissected the single-cell RNA-seq data of 3345 cells from four patients and identified dysregulated genes including long non-coding RNAs (lncRNAs), which were involved in the development and progression of GBM.

View Article and Find Full Text PDF

Breast cancer (BRCA) is the most common cancer and a major cause of death in women. Long non-coding RNAs (lncRNAs) are emerging as key regulators and have been implicated in carcinogenesis and prognosis. In this study, we aimed to develop a lncRNA signature of BRCA patients to improve risk stratification.

View Article and Find Full Text PDF

Although much progress has been made to improve treatment, colon cancer remains a leading cause of cancer death worldwide. Metabolic reprogramming is a significant ability of cancer cells to ensure the necessary energy supply in uncontrolled proliferation. Since reprogramming energy metabolism has emerged as a new hallmark of cancer cells, accumulating evidences have suggested that metabolism-related genes may serve as key regulators of tumorigenesis and potential biomarkers.

View Article and Find Full Text PDF

Engineered organoids by sequential introduction of key mutations could help modeling the dynamic cancer progression. However, it remains difficult to determine gene paths which were sufficient to capture cancer behaviors and to broadly explain cancer mechanisms. Here, as a case study of colorectal cancer (CRC), functional and dynamic characterizations of five types of engineered organoids with different mutation combinations of five driver genes (, and ) showed that sequential introductions of all five driver mutations could induce enhanced activation of more hallmark signatures, tending to cancer.

View Article and Find Full Text PDF

Epigenetic modifications play critical roles in modulating gene expression, yet their roles in regulatory networks in human cell lines remain poorly characterized. We integrated multiomics data to construct directed regulatory networks with nodes and edges labeled with chromatin states in human cell lines. We observed extensive association of diverse chromatin states and network motifs.

View Article and Find Full Text PDF

Over the past decade, thousands of long noncoding RNAs (lncRNAs) have been identified, many of which play crucial roles in normal physiology and human disease. LncRNAs can interact with chromatin and then recruit protein complexes to remodel chromatin states, thus regulating gene expression. However, how lncRNA-chromatin interactions contribute to their biological functions is largely unknown.

View Article and Find Full Text PDF

Purpose: Genomic studies have revealed that genomic aberrations play important roles in the progression of this disease. The aim of this study was to evaluate the associations between clinical survival outcomes of the clonality and subclonality status of driver genes in breast cancer.

Methods: We performed an integrated analysis to infer the clonal status of 55 driver genes in breast cancer data from TCGA.

View Article and Find Full Text PDF

One of the most fundamental questions in biology is what types of cells form different tissues and organs in a functionally coordinated fashion. Larger-scale single-cell sequencing and biology experiment studies are now rapidly opening up new ways to track this question by revealing substantial cell markers for distinguishing different cell types in tissues. Here, we developed the CellMarker database (http://biocc.

View Article and Find Full Text PDF

Substantial cancer genome sequencing efforts have discovered many important driver genes contributing to tumorigenesis. However, very little is known about the genetic alterations of long non-coding RNAs (lncRNAs) in cancer. Thus, there is a need for systematic surveys of driver lncRNAs.

View Article and Find Full Text PDF

Breast cancer is a very complex and heterogeneous disease with variable molecular mechanisms of carcinogenesis and clinical behaviors. The identification of prognostic risk factors may enable effective diagnosis and treatment of breast cancer. In particular, numerous gene-expression-based prognostic signatures were developed and some of them have already been applied into clinical trials and practice.

View Article and Find Full Text PDF

Despite highly successful treatments for localized prostate cancer (PCa), prognostic biomarkers are needed to improve patient management and prognosis. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are key regulators with biological and clinical significance. By transcriptome analysis, we identified a set of consistently dysregulated lncRNAs in PCa across different datasets and revealed an eight-lncRNA signature that significantly associated with the biochemical recurrence (BCR)-free survival.

View Article and Find Full Text PDF

Large-scale sequencing studies discovered substantial genetic variants occurring in enhancers which regulate genes via long range chromatin interactions. Importantly, such variants could affect enhancer regulation by changing transcription factor bindings or enhancer hijacking, and in turn, make an essential contribution to disease progression. To facilitate better usage of published data and exploring enhancer deregulation in various human diseases, we created DiseaseEnhancer (http://biocc.

View Article and Find Full Text PDF

Systematic sequencing of cancer genomes has revealed prevalent heterogeneity, with patients harboring various combinatorial patterns of genetic alteration. In particular, a phenomenon that a group of genes exhibits mutually exclusive patterns has been widespread across cancers, covering a broad spectrum of crucial cancer pathways. Recently, there is considerable evidence showing that, mutual exclusivity reflects alternative functions in tumor initiation and progression, or suggests adverse effects of their concurrence.

View Article and Find Full Text PDF