The Kimoto-style fermentation starter is a traditional preparation method of sake brewing. In this process, specific microbial transition patterns have been observed within nitrate-reducing bacteria and lactic acid bacteria during the production process of the fermentation starter. We have characterized phylogenetic compositions and diversity of the bacterial community in a sake brewery performing the Kimoto-style fermentation.
View Article and Find Full Text PDFIntroduction: In -style fermentation, a fermentation starter is produced before the primary brewing process to stabilize fermentation. Nitrate-reducing bacteria, mainly derived from brewing water, produce nitrite, and lactic acid bacteria such as can proliferate because of their tolerance toward low temperature and their low nutritional requirements. Later, becomes the dominant genus, leading to weakly acidic conditions that contribute to control yeasts and undesired bacterial contaminants.
View Article and Find Full Text PDFIR spectra of phenol-Arn (PhOH-Arn) clusters with n=1 and 2 were measured in the neutral and cationic electronic ground states in order to determine the preferential intermolecular ligand binding motifs, hydrogen bonding (hydrophilic interaction) versus pi bonding (hydrophobic interaction). Analysis of the vibrational frequencies of the OH stretching motion, nuOH, observed in nanosecond IR spectra demonstrates that neutral PhOH-Ar and PhOH-Ar2 as well as cationic PhOH+-Ar have a pi-bound structure, in which the Ar atoms bind to the aromatic ring. In contrast, the PhOH+-Ar2 cluster cation is concluded to have a H-bound structure, in which one Ar atom is hydrogen-bonded to the OH group.
View Article and Find Full Text PDFThe hole-burning (HB) spectra of phenol-Arn (PhOH-Arn) clusters with n = 1 and 2 have been measured in a molecular beam to clarify the possible existence of isomers. Two species were identified to give rise to signals in the S1-S0 spectrum recorded for the n = 1 cluster; however, one of the species was found to originate from dissociation of an n = 2 cluster. Similarly, three species were observed in the spectrum of the n = 2 cluster, and two of them were assigned to n = 3 and larger clusters.
View Article and Find Full Text PDF