Publications by authors named "Yuji Okawa"

Long poly-diacetylene chains are excellent candidates for planar, on-surface synthesized molecular electronic wires. Since hexagonal-Boron Nitride (h-BN) was identified as the best available atomically flat insulator for the deposition of poly-diacetylene precursors, we demonstrate the polymerization patterns and rate on it under UV-light irradiation, with subsequent polymer identification by atomic force microscopy. The results on h-BN indicate self-sensitization which yields blocks comprised of several polymers, unlike on the well-studied graphite/diacetylene system, where the polymers are always isolated.

View Article and Find Full Text PDF

Localization of atomic defect-induced electronic transport through a single graphene layer is calculated using a full-valence electronic structure description as a function of the defect density and taking into account the atomic-scale deformations of the layer. The elementary electronic destructive interferences leading to Anderson localization are analyzed. The low-voltage current intensity decreases with increasing length and defect density, with a calculated localization length ζ = 3.

View Article and Find Full Text PDF

Single crystal sapphire and diamond surfaces are used as planar, atomically flat insulating surfaces, for the deposition of the diacetylene compound 10,12-nonacosadiynoic acid. The surface assembly is compared with results on hexagonal boron nitride (h-BN), highly oriented pyrolytic graphite (HOPG) and MoS surfaces. A perfectly flat-lying monolayer of 10,12-nonacosadiynoic acid self-assembles on h-BN like on HOPG and MoS.

View Article and Find Full Text PDF

The electrical characterization of single-polymer chains on a surface is an important step towards novel molecular device development. The main challenge is the lack of appropriate atomically flat insulating substrates for fabricating single-polymer chains. Here, using atomic force microscopy, we demonstrate that the (0001) surface of an insulating hexagonal boron nitride (h-BN) substrate leads to a flat-lying self-assembled monolayer of diacetylene compounds.

View Article and Find Full Text PDF

Bottom-up creation of huge molecular complexes by covalently interconnecting functional molecules and conductive polymers is a key technology for constructing nanoscale electronic circuits. In this study, we have created an array of molecule-polymer nanojunctions from C60 molecules and polydiacetylene (PDA) nanowires at designated positions on solid surfaces by controlling self-assemblies and intermolecular chemical reactions of molecular ingredients predeposited onto the surfaces. In the proposed method, the construction of each nanojunction spontaneously proceeds via two types of chemical reactions: a chain polymerization among self-assembled diacetylene compound molecules for creating a single PDA nanowire and a subsequent cycloaddition reaction between the propagating forefront part of the PDA backbone and a single C60 molecule adsorbed on the surface.

View Article and Find Full Text PDF

Ordered arrays of metal nanoparticles are important for nanoelectronic and nanophotonic applications. Here, we report the formation of self-assembled arrays of gold nanoparticles on molecular layers of diacetylene compounds on a MoS2(0001) substrate. The arrangement of gold nanoparticles is observed using scanning tunneling microscopy.

View Article and Find Full Text PDF

Single functional molecules offer great potential for the development of novel nanoelectronic devices with capabilities beyond today's silicon-based devices. To realise single-molecule electronics, the development of a viable method for connecting functional molecules to each other using single conductive polymer chains is required. The method of initiating chain polymerisation using the tip of a scanning tunnelling microscope (STM) is very useful for fabricating single conductive polymer chains at designated positions and thereby wiring single molecules.

View Article and Find Full Text PDF

Key to single-molecule electronics is connecting functional molecules to each other using conductive nanowires. This involves two issues: how to create conductive nanowires at designated positions, and how to ensure chemical bonding between the nanowires and functional molecules. Here, we present a novel method that solves both issues.

View Article and Find Full Text PDF

Spontaneous chain polymerization of molecules initiated by a scanning tunneling microscope tip is studied with a focus on its rate-determining factors. Such chain polymerization that happens in self-assembled monolayers (SAM) of diacetylene compound molecules, which results in a π-conjugated linear polydiacetylene nanowire, varies in its rate P depending on domains in the SAM and substrate materials. While the arrangement of diacetylene molecules is identical in every domain on a graphite substrate, it varies in different domains on a MoS(2) substrate.

View Article and Find Full Text PDF

The structure of a single polydiacetylene compound on a graphite substrate was investigated using atomic force microscopy (AFM). The linear conjugated polydiacetylenes were obtained through chain polymerization of a monomolecular layer of diacetylene compound on a graphite substrate under ultraviolet light irradiation. AFM observations revealed that the polydiacetylenes were imaged higher than the unpolymerized monomer rows.

View Article and Find Full Text PDF

Chain polymerizations of diacetylene compound multilayer films on graphite substrates were examined with a scanning tunneling microscope (STM) at the liquid/solid interface of the phenyloctane solution. The first layer grew very quickly into many small domains. This was followed by the slow formation of the piled up layers into much larger domains.

View Article and Find Full Text PDF