Objective: We aimed to determine whether early detection of acute transient thyroid swelling (ATTS) is possible using ultrasonography (US) surveillance immediately after fine-needle aspiration biopsy (FNAB) and discuss the usefulness of routine US after FNAB.
Methods: We retrospectively evaluated the incidence, clinical features, and US and computed tomography findings of ATTS in patients with thyroid nodules who underwent FNABs at our hospital. The study period was divided into two time periods: only symptomatic patients after FNAB were examined using US in the first period (period A: January 2016 to November 2020), whereas all patients were routinely examined using US shortly after FNAB in the second period (period B: December 2020 to December 2022).
Objective: Thyrotoxicosis causes excess energy expenditure, resulting in weight loss, despite increased appetite, and changes in body composition, which are typically reversible with the normalization of thyroid hormone levels. However, patients with hyperthyroidism due to Graves' disease are sometimes hesitant to undergo treatment because of the perceived morbidity associated with weight gain. Therefore, obtaining data to explain the details of such weight gain to these patients is important.
View Article and Find Full Text PDFOncocytic thyroid cancer is characterized by the aberrant accumulation of abnormal mitochondria in the cytoplasm and a defect in oxidative phosphorylation. We performed metabolomics analysis to compare metabolic reprogramming among the oncocytic and non-oncocytic thyroid cancer cell lines XTC.UC1 and TPC1, respectively, and a normal thyroid cell line Nthy-ori 3-1.
View Article and Find Full Text PDFThe main molecular mechanism underlying acute suppression of iodine organification in normal thyroids after an excessive iodine load, that is, the Wolff-Chaikoff effect, is assumed to be suppression of iodine oxidation and iodothyronine synthesis. However, the mechanism underlying chronic antithyroid action of inorganic iodine in Graves' disease is not fully understood. Using a mouse model of Graves' hyperthyroidism, we examined changes in iodothyronine content and gene expression profiles in the thyroid glands after inorganic iodine loading.
View Article and Find Full Text PDFMetabolism is a series of life-sustaining chemical reactions in organisms, providing energy required for cellular processes and building blocks for cellular constituents of proteins, lipids, carbohydrates and nucleic acids. Cancer cells frequently reprogram their metabolic behaviors to adapt their rapid proliferation and altered tumor microenvironments. Not only aerobic glycolysis (also termed the Warburg effect) but also altered mitochondrial metabolism, amino acid metabolism and lipid metabolism play important roles for cancer growth and aggressiveness.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
August 2023
Mitochondria-eating protein (MIEAP) is a molecule important for non-canonical mitophagy and thought to be a tumor suppressor. Our previous study found that MIEAP expression is defective in thyroid oncocytomas, irrespective of being benign or malignant, and also in non-oncocytic thyroid cancers. Thyroid oncocytomas are composed of large polygonal cells with eosinophilic cytoplasm that is rich in abnormal mitochondria.
View Article and Find Full Text PDFThe thyrotropin receptor (TSHR) plays critical roles in thyroid growth and function and in the pathogenesis of several thyroid diseases including Graves' hyperthyroidism and ophthalmopathy, non-autoimmune hyperthyroidism and thyroid cancer. Several low-molecular weight compounds (LMWCs) and anti-TSHR monoclonal antibodies (mAbs) with receptor antagonistic and inverse agonistic activities have been reported. The former binds to the pocket formed by the receptor transmembrane bundle, and the latter to the extracellular TSH binding site.
View Article and Find Full Text PDFNumerous studies have examined the role of autophagy in thyroid cancer treatment; however there are discrepancies among the reported data, with some showing the pro-survival and others the anti-survival effects of autophagy. These discrepant results appear to be at least in part due to insufficient analyses or data misinterpretation as well as improper assessments of autophagic activity. Therefore, the present study re-evaluated the regulation of autophagic activity by various anticancer modalities and examined the role of autophagy in thyroid cancer treatment in three thyroid cancer cell lines (TPC1, ACT1 and KTC1).
View Article and Find Full Text PDFChildhood radiation exposure is a known thyroid cancer risk factor. This study evaluated the effects of age on radiation-induced thyroid carcinogenesis in rats irradiated with 8 Gy X-rays. We analyzed cell proliferation, cell death, DNA damage response, and autophagy-related markers in 4-week-old (4W) and 7-month-old (7M) rats and the incidence of thyroid tumors in 4W, 4-month-old (4M), and 7M rats 18 months after irradiation.
View Article and Find Full Text PDFThe appropriate amount of iodine is critical for normal function of thyroid cells synthesizing thyroid hormones. Although normal thyroid cell lines such as rat PCCL3 and FRTL5 and human Nthy-ori 3-1 have been widely used for in vitro studies on physiological and pathophysiological effects of iodine on thyroid cells, we have recently pointed out the critical differences between FRTL5/PCCL3 cells and Nthy-ori 3-1 cells. Therefore, we here directly compared some of the cellular characteristics-iodine uptake, differentiated status, iodine-induced cytotoxicity, and iodine-regulation of autophagy-between PCCL3 and Nthy-ori 3-1 cells.
View Article and Find Full Text PDFAutophagy is an evolutionarily conserved catabolic process by which cells degrade intracellular proteins and organelles in the lysosomes and recycle their metabolites. We have recently demonstrated the crucial role for the basal level of autophagic activity in thyrocyte survival and homeostasis using the thyroid-specific autophagy knockout mice. Here, we first studied hormonal regulation of autophagy in thyrocytes in vitro using a rat thyroid cell line PCCl3 and in vivo with mice.
View Article and Find Full Text PDFGraves' disease (GD) is an autoimmune disease that primarily affects the thyroid gland. It is the most common cause of hyperthyroidism and occurs at all ages but especially in women of reproductive age. Graves' hyperthyroidism is caused by autoantibodies to the thyroid-stimulating hormone receptor (TSHR) that act as agonists and induce excessive thyroid hormone secretion, releasing the thyroid gland from pituitary control.
View Article and Find Full Text PDFOncocytic cell tumor of the thyroid is composed of large polygonal cells with eosinophilic cytoplasm that is rich in mitochondria. These tumors frequently have the mutations in mitochondrial DNA encoding the mitochondrial electron transport system complex I. However, the mechanism for accumulation of abnormal mitochondria is unknown.
View Article and Find Full Text PDFPurpose: Transforming growth factor-β (TGFβ) has pleiotropic actions, including both anti- and pro-tumorigenic abilities. We have previously shown no tumor development in the thyroid-specific TGFβ receptor type II knockout (Tgfβr2 KO) mice, indicating the insufficiency of defective TGFβ signal itself for thyroid cancer initiation. In the current study, we evaluated whether defective TGFβ signal accelerates BRAF-mediated thyroid carcinogenesis in our mouse model, in which intrathyroidal injection of adenovirus expressing Cre under thyroglobulin (TG) promoter (Ad-TgP-Cre) into thyroid lobes of conditional Braf knock-in mice (Braf) induces thyroid cancers 12 months later.
View Article and Find Full Text PDFPurpose: Papillary thyroid cancers (PTCs) are the most common type of thyroid cancers, in which BRAF is the most prevalent driver mutation. It is known that BRAF-positive PTCs are clinically and molecularly heterogenous in terms of aggressiveness and prognosis. The molecular mechanisms of this heterogeneity were evaluated.
View Article and Find Full Text PDFAutophagy is a catabolic process that involves the degradation of cellular components through the lysosomal machinery, relocating nutrients from unnecessary processes to more pivotal processes required for survival. It has been reported that systemic disruption of the Atg5 or Atg7 gene, a component of autophagy, is lethal and that its tissue-specific disruption causes tissue degeneration in several organs. However, the functional significance of autophagy in the thyroid glands remains unknown.
View Article and Find Full Text PDFThe BRAFV600E mutation is the most prevalent driver mutation of sporadic papillary thyroid cancers (PTC). It was previously shown that prenatal or postnatal expression of BRAFV600E under elevated TSH levels induced thyroid cancers in several genetically engineered mouse models. In contrast, we found that postnatal expression of BRAFV600E under physiologic TSH levels failed to develop thyroid cancers in conditional transgenic Tg(LNL-BrafV600E) mice injected in the thyroid with adenovirus expressing Cre under control of the thyroglobulin promoter (Ad-TgP-Cre).
View Article and Find Full Text PDFHorm Metab Res
December 2018
The association between thyroid cancer and thyroid autoimmunity has long been suggested, but remains to be elucidated for several decades. Here the data on this issue are updated by summarizing relevant papers published between 2012 and early 2018. Although numerous papers demonstrated the significant increase in the prevalence of thyroid autoimmunity (positive intrathyroidal lymphocyte infiltration and/or anti-thyroglobulin/thyroid peroxidase antibodies) in patients with thyroid cancers as compared to those with benign nodules, and also the significant increase in the prevalence of papillary thyroid cancer (PTC) in patients with thyroid autoimmunity as compared to those without, there are some crucial biases that should be taken into account for their interpretation.
View Article and Find Full Text PDFCancer stem cells (CSCs), a small fraction of a tumor mass, are proposed to be highly crucial for cancer initiation, recurrence and metastasis. We have recently found that aldehyde dehydrogenase (ALDH) 1A3 is a CSC marker in some thyroid cancer cell lines, whose functional activity is, however, not relevant for thyroid cancer stemness. Since previous studies on malignancies in other organs suggest that intracellular reactive oxygen species (ROS) might be a functional and targetable CSC marker, the present study was conducted to elucidate the significance of ROS as a functional CSC marker in thyroid cancer cell lines.
View Article and Find Full Text PDFThe thyroid gland is vulnerable not only to external radiation but also to internal radiation, because the thyroid cells can incorporate radioactive iodine when synthesizing thyroid hormones. Since radiation-induction of thyroid neoplasia, including thyroid cancer, is well recognized, the data on radiation-related thyroid autoimmunity and dysfunction are summarized and reviewed. High-dose irradiation, irrespective of being external or internal, is strongly associated with a risk of hypothyroidism (with the prevalence ranging from 2.
View Article and Find Full Text PDFRadiat Environ Biophys
November 2017
We evaluated the effect of the antioxidant N-acetyl-L-cysteine (NAC) on the levels of reactive oxygen species (ROS), DNA double strand breaks (DSB) and micronuclei (MN) induced by internal and external irradiation using a rat thyroid cell line PCCL3. In internal irradiation experiments, ROS and DSB levels increased immediately after I addition and then gradually declined, resulting in very high levels of MN at 24 and 48 h. NAC administration both pre- and also post-I addition suppressed ROS, DSB and MN.
View Article and Find Full Text PDFRecent studies have revealed that aldehyde dehydrogenase (ALDH) is a candidate marker for thyroid cancer stem cells, although its activity is flexible. The goal of this study is to clarify the functional significance of ALDH enzymatic activity on thyroid cancer stem cells properties in anaplastic thyroid cancer cell lines. In vitro sphere formation assay was used to judge the stemness of 4 anaplastic thyroid cancer cell lines (FRO, ACT1, 8505C, and KTC3).
View Article and Find Full Text PDFRecent genome-wide association studies have identified several single nucleotide polymorphisms in the forkhead box E1 gene (FOXE1) locus, which are strongly associated with the risk for thyroid cancer. In addition, our recent work has demonstrated FOXE1 overexpression in papillary thyroid carcinomas. To assess possible contribution of Foxe1 to thyroid carcinogenesis, transgenic mice overexpressing Foxe1 in their thyroids under thyroglobulin promoter (Tg-Foxe1) were generated.
View Article and Find Full Text PDFThe cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines.
View Article and Find Full Text PDF