Background: Although accurate preoperative diagnosis of lymph node metastasis is essential for optimizing treatment strategies for low rectal cancer, the accuracy of present diagnostic modalities has room for improvement.
Objective: The study aimed to establish a high-precision diagnostic method for lymph node metastasis of low rectal cancer using artificial intelligence.
Design: A retrospective observational study.
How to obtain internal cavity features and perform image matching is a great challenge for laparoscopic 3D reconstruction. This paper proposes a method for detecting and associating vascular features based on dual-branch weighted fusion vascular structure enhancement. Our proposed method is divided into three stages, including analyzing various types of minimally invasive surgery (MIS) images and designing a universal preprocessing framework to make our method generalized.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
April 2023
Purpose: Lymph node (LN) detection is a crucial step that complements the diagnosis and treatments involved during cancer investigations. However, the low-contrast structures in the CT scan images and the nodes' varied shapes, sizes, and poses, along with their sparsely distributed locations, make the detection step challenging and lead to many false positives. The manual examination of the CT scan slices could be time-consuming, and false positives could divert the clinician's focus.
View Article and Find Full Text PDFRoadway area calculation is a novel problem in remote sensing and urban planning. This paper models this problem as a two-step problem, roadway extraction, and area calculation. Roadway extraction from satellite images is a problem that has been tackled many times before.
View Article and Find Full Text PDFSensors (Basel)
February 2020
LiDAR data contain feature information such as the height and shape of the ground target and play an important role for land classification. The effect of convolutional neural network (CNN) for feature extraction on LiDAR data is very significant, however CNN cannot resolve the spatial relationship of features adequately. The capsule network (CapsNet) can identify the spatial variations of features and is widely used in supervised learning.
View Article and Find Full Text PDFLight detection and ranging (LiDAR) is a frequently used technique of data acquisition and it is widely used in diverse practical applications. In recent years, deep convolutional neural networks (CNNs) have shown their effectiveness for LiDAR-derived rasterized digital surface models (LiDAR-DSM) data classification. However, many excellent CNNs have too many parameters due to depth and complexity.
View Article and Find Full Text PDFMedical diagnosis judges the status of polyp from the size and the 3D shape of the polyp from its medical endoscope image. However the medical doctor judges the status empirically from the endoscope image and more accurate 3D shape recovery from its 2D image has been demanded to support this judgment. As a method to recover 3D shape with high speed, VBW (Vogel-Breuß-Weickert) model is proposed to recover 3D shape under the condition of point light source illumination and perspective projection.
View Article and Find Full Text PDF