Publications by authors named "Yuin-Han Loh"

A time-lapse live embryo monitoring system provides a powerful approach to recording dynamic developmental events of cultured embryos in detail. By obtaining continuous short-interval images, blastocyst formation can be predicted and embryos can be selected. The objective of this study was to investigate the morphokinetic parameters of fishing cat-domestic cat interspecies somatic cell nuclear transfer (iSCNT) embryos from one-cell to blastocyst stages, and in particular, the cleavage patterns of the first division in iSCNT and IVF embryos, as these play a central role in euploidy.

View Article and Find Full Text PDF
Article Synopsis
  • Embryonic stem cells can self-organize into structures similar to blastocysts, which are important for studying early development and potential therapies.
  • Researchers identified key factors influencing blastoid formation, focusing on the gene Nr1h2, which is critical for its development and operation across multiple species.
  • Activation of Nr1h2 not only promotes blastoid creation but also enhances their ability to implant in the uterus and contribute to both embryonic and extraembryonic tissues, highlighting its broad regulatory role in early embryonic development.
View Article and Find Full Text PDF

Ovarian clear cell carcinoma (CCC) has an East Asian preponderance. It is associated with endometriosis, a benign condition where endometrial (inner lining of the uterus) tissue is found outside the uterus and on the peritoneal surface, in the abdominal or pelvic space. CCC is relatively more resistant to conventional chemotherapy compared to other ovarian cancer subtypes and is associated with a poorer prognosis.

View Article and Find Full Text PDF

Enterovirus A71 (EV-A71) causes Hand, Foot, and Mouth Disease and has been clinically associated with neurological complications. However, there is a lack of relevant models to elucidate the neuropathology of EV-A71 and its mechanism, as the current models mainly utilize animal models or immortalized cell lines. In this study, we established a human motor neuron model for EV-A71 infection.

View Article and Find Full Text PDF

Cohesin plays a crucial role in the organization of topologically-associated domains (TADs), which influence gene expression and DNA replication timing. Whether epigenetic regulators may affect TADs via cohesin to mediate DNA replication remains elusive. Here, we discover that the histone demethylase PHF2 associates with RAD21, a core subunit of cohesin, to regulate DNA replication in mouse neural stem cells (NSC).

View Article and Find Full Text PDF
Article Synopsis
  • Advanced molecular and cellular technologies, particularly induced pluripotent stem cells (iPSCs), are emerging as powerful tools for wildlife conservation, offering an infinite source of stem cells from endangered species.
  • This study reports the first successful creation of iPSCs from adult somatic cells of three endangered Southeast Asian primates, including the Celebes Crested Macaque, Lar Gibbon, and Siamang, which could lead to new insights into primate evolution and development.
  • iPSCs derived from these species not only bolster conservation efforts but also enhance research capabilities, allowing for sustainable sampling and the development of in vitro models for studying diseases.
View Article and Find Full Text PDF

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1 state.

View Article and Find Full Text PDF

Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion.

View Article and Find Full Text PDF

5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the most abundant DNA modifications that have important roles in gene regulation. Detailed studies of these different epigenetic marks aimed at understanding their combined effects and dynamic interconversion are, however, hampered by the inability of current methods to simultaneously measure both modifications, particularly in samples with limited quantities. We present DNA analysis by restriction enzyme for simultaneous detection of multiple epigenomic states (DARESOME), an assay based on modification-sensitive restriction digest and sequential tag ligation that can concurrently perform quantitative profiling of unmodified cytosine, 5mC, and 5hmC in CCGG sites genome-wide.

View Article and Find Full Text PDF

N-methyladenosine (mA) RNA modification plays important roles in the governance of gene expression and is temporally regulated in different cell states. In contrast to global mA profiling in bulk sequencing, single-cell technologies for analyzing mA heterogeneity are not extensively established. Here, we developed single-nucleus m6A-CUT&Tag (sn-m6A-CT) for simultaneous profiling of mA methylomes and transcriptomes within a single nucleus using mouse embryonic stem cells (mESCs).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) can be produced from red blood cells (RBCs) on a large scale and used to deliver therapeutic payloads efficiently. However, not much is known about the native biological properties of RBCEVs. Here, we demonstrate that RBCEVs are primarily taken up by macrophages and monocytes.

View Article and Find Full Text PDF
Article Synopsis
  • People with Down syndrome (DS) seem to age faster than others, but scientists aren't sure why.
  • A study looked at how "biological age" of people with DS compared to healthy people and found that DS individuals are, on average, around 18.4 to 19.1 years older biologically than their actual age.
  • The researchers discovered that a specific gene on chromosome 21 called DYRK1A plays a big role in causing this accelerated ageing, and finding ways to reduce its effects could help people with DS.
View Article and Find Full Text PDF
Article Synopsis
  • A rare population of mouse embryonic stem cells (mESCs), known as 2-cell-like cells, is characterized by specific gene expressions related to early embryonic stages.
  • This study highlights the importance of certain ribosomal proteins (RPs) in maintaining the identity of these mESCs and regulating the expression of early-stage specific genes.
  • Disruption of these RPs leads to changes in gene expression and chromatin structure, primarily involving the activation of pathways linked to the P53 protein and its downstream effects on 2C transcript expression.
View Article and Find Full Text PDF

The rapidly evolving stem cell field puts much stress on developing educational resources. The ISSCR Education Committee has created a flexible stem cell syllabus rooted in core concepts to facilitate stem cell literacy. The free syllabus will be updated regularly to maintain accuracy and relevance.

View Article and Find Full Text PDF

Background: Tissue organoids generated from human pluripotent stem cells are valuable tools for disease modelling and to understand developmental processes. While recent progress in human cardiac organoids revealed the ability of these stem cell-derived organoids to self-organize and intrinsically formed chamber-like structure containing a central cavity, it remained unclear the processes involved that enabled such chamber formation.

Methods: Chambered cardiac organoids (CCOs) differentiated from human embryonic stem cells (H7) were generated by modulation of Wnt/ß-catenin signalling under fully defined conditions, and several growth factors essential for cardiac progenitor expansion.

View Article and Find Full Text PDF
Article Synopsis
  • The study of human-animal chimeras, particularly human-monkey chimeras, faces various technical difficulties and ethical dilemmas.
  • This Comment highlights the significance of researching these chimeras, suggesting their potential benefits for science and medicine.
  • It also addresses the current scientific and regulatory challenges that need to be overcome for this research to progress effectively.
View Article and Find Full Text PDF
Article Synopsis
  • SETDB1 is a crucial regulator of specific genes and retroviral elements by adding a repressive mark (H3K9me3), but its other roles have been less explored.
  • A study in mouse embryonic stem cells found regions lacking typical repressive histone marks, enriched with the CTCF motif and linked to the Cohesin complex, leading to the discovery of specific domains called DiSCs.
  • SETDB1 and Cohesin work together to control gene expression and genome structure at these DiSCs; removing SETDB1 disrupts Cohesin binding and affects gene regulation, highlighting its role in stem cell maintenance and differentiation.
View Article and Find Full Text PDF
Article Synopsis
  • The study creates the first single-cell atlas of human and pig eye tissues, exploring differences in retinal cells between the two species.
  • It identifies potential adult stem cells in the iris and constructs a gene disease map for eye disorders throughout the eye's compartments.
  • The research also investigates cell signalling mechanisms and gene expression, particularly highlighting the essential role of the KLF7 gene in the development of retinal ganglion cells.
View Article and Find Full Text PDF

Chromatin modification contributes to pluripotency maintenance in embryonic stem cells (ESCs). However, the related mechanisms remain obscure. Here, we show that Npac, a "reader" of histone H3 lysine 36 trimethylation (H3K36me3), is required to maintain mouse ESC (mESC) pluripotency since knockdown of Npac causes mESC differentiation.

View Article and Find Full Text PDF

The regulation of mammalian stem cell fate during differentiation is complex and can be delineated across many levels. At the chromatin level, the replacement of histone variants by chromatin-modifying proteins, enrichment of specific active and repressive histone modifications, long-range gene interactions, and topological changes all play crucial roles in the determination of cell fate. These processes control regulatory elements of critical transcriptional factors, thereby establishing the networks unique to different cell fates and initiate waves of distinctive transcription events.

View Article and Find Full Text PDF

Background: Despite recent rapid progress in method development and biological understanding of induced pluripotent stem (iPS) cells, there has been a relative shortage of tools that monitor the early reprogramming process into human iPS cells.

Methods: We screened the in-house built fluorescent library compounds that specifically bind human iPS cells. After tertiary screening, the selected probe was analyzed for its ability to detect reprogramming cells in the time-dependent manner using high-content imaging analysis.

View Article and Find Full Text PDF

Universal red blood cells (RBCs) differentiated from O-negative human induced pluripotent stem cells (hiPSCs) could find applications in transfusion medicine. Given that each transfusion unit of blood requires 2 trillion RBCs, efficient bioprocesses need to be developed for large-scale in vitro generation of RBCs. We have developed a scalable suspension agitation culture platform for differentiating hiPSC-microcarrier aggregates into functional RBCs and have demonstrated scalability of the process starting with 6 well plates and finally demonstrating in 500 mL spinner flasks.

View Article and Find Full Text PDF