Publications by authors named "Yuichiro Ueno"

The increased difference in the sulfur isotopic compositions of sedimentary sulfate (carbonate-associated sulfate: CAS) and sulfide (chromium-reducible sulfur: CRS) during the Ediacaran Shuram excursion is attributed to increased oceanic sulfate concentration in association with the oxidation of the global ocean and atmosphere. However, recent studies on the isotopic composition of pyrites have revealed that CRS in sediments has diverse origins of pyrites. These pyrites are formed either in the water column/shallow sediments, where the system is open with respect to sulfate, or in deep sediments, where the system is closed with respect to sulfate.

View Article and Find Full Text PDF
Article Synopsis
  • Organic matter in Martian sediments holds potential insights into early Mars' chemistry and habitability, highlighting the need for further research.
  • The Curiosity rover discovered variable carbon isotopic values in Martian organic matter, leading to theories about its creation through atmospheric CO reduction processes.
  • A model incorporating factors like carbon isotope fractionation and atmospheric conditions suggests that certain organic compounds could explain observed carbon depletion patterns in Martian materials.
View Article and Find Full Text PDF

Amino acids in carbonaceous chondrites may have seeded the origin of life on Earth and possibly elsewhere. Recently, the return samples from a C-type asteroid Ryugu were found to contain amino acids with a similar distribution to Ivuna-type CI chondrites, suggesting the potential of amino acid abundances as molecular descriptors of parent body geochemistry. However, the chemical mechanisms responsible for the amino acid distributions remain to be elucidated particularly at low temperatures (<50°C).

View Article and Find Full Text PDF

Autophagy is a dynamic process that degrades subcellular constituents, and its activity is measured by autophagic flux. The tandem proteins RFP-GFP-LC3 and GFP-LC3-RFP-LC3ΔG, which enable the visualization of autophagic vacuoles of different stages by differences in their fluorescent color, are useful tools to monitor autophagic flux, but they require plasmid transfection. In this study, we hence aimed to develop a new method to monitor autophagic flux using small cell-permeable fluorescent probes.

View Article and Find Full Text PDF

Post-mega-earthquake geochemical and microbiological properties in subseafloor sediments of the Japan Trench accretionary wedge were investigated using core samples from Hole C0019E, which was drilled down to 851‍ ‍m below seafloor (mbsf) at a water depth of 6,890 m. Methane was abundant throughout accretionary prism sediments; however, its concentration decreased close to the plate boundary decollement. Methane isotope systematics indicated a biogenic origin.

View Article and Find Full Text PDF

α-Hydroxy acids are prebiotic monomers that undergo dehydration synthesis to form polyester gels, which assemble into membraneless microdroplets upon aqueous rehydration. These microdroplets are proposed as protocells that can segregate and compartmentalize primitive molecules/reactions. Different primitive aqueous environments with a variety of salts could have hosted chemistries that formed polyester microdroplets.

View Article and Find Full Text PDF

Distinguishing biotic compounds from abiotic ones is important in resource geology, biogeochemistry, and the search for life in the universe. Stable isotopes have traditionally been used to discriminate the origins of organic materials, with particular focus on hydrocarbons. However, despite extensive efforts, unequivocal distinction of abiotic hydrocarbons remains challenging.

View Article and Find Full Text PDF

Abiotic synthesis of ammonia (NH) and amino acids is important for the origin of life and early evolution. Ammonia and organic nitrogen species may be produced from nitrous oxide (NO), which is a second abundant nitrogen species in the atmosphere. Here, we report a new photochemical experiment and evaluate whether NO can be used as a nitrogen source for prebiotic synthesis in the atmosphere.

View Article and Find Full Text PDF

As a process of cellular uptake, endocytosis, with gradient acidity in different endocytic vesicles, is vital for the homeostasis of intracellular nutrients and other functions. To study the dynamics of endocytic pathway, a membrane-anchored pH probe, ECGreen, is synthesized to visualize endocytic vesicles under structured illumination microscopy (SIM), a super-resolution technology. Being sensitive to acidity with increasing fluorescence at low pH, ECGreen can differentiate early and late endosomes as well as endolysosomes.

View Article and Find Full Text PDF

The cystine/glutamate antiporter (xCT) is a crucial transporter that maintains cellular redox balance by regulating intracellular glutathione synthesis via cystine uptake. However, no robust and simple method to determine the cystine uptake activity of xCT is currently available. We have developed a method to measure the xCT activity via the reaction of selenocysteine and fluorescein -diacrylate (FOdA).

View Article and Find Full Text PDF

Rationale: The C- C isotopologues of C molecules have recently been measured using a fluorination method. The C compound is first fluorinated into hexafluoroethane (C F ), and its C-isotopologues are subsequently measured using a conventional isotope ratio mass spectrometer. Here, we present an approach for standardizing the fluorination method on an absolute reference scale by using isotopically enriched C F .

View Article and Find Full Text PDF

Large-scale distributed training of deep neural networks results in models with worse generalization performance as a result of the increase in the effective mini-batch size. Previous approaches attempt to address this problem by varying the learning rate and batch size over epochs and layers, or ad hoc modifications of batch normalization. We propose scalable and practical natural gradient descent (SP-NGD), a principled approach for training models that allows them to attain similar generalization performance to models trained with first-order optimization methods, but with accelerated convergence.

View Article and Find Full Text PDF

The ability to detect cell surface proteins using fluorescent-dye-labeled antibodies is crucial for the reliable identification of many cell types. However, the different types of cell surface proteins used to identify cells are currently limited in number because they need to be expressed at high levels to exceed background cellular autofluorescence, especially in the shorter-wavelength region. Herein we report on a new method, quinone methide-based catalyzed labeling for signal amplification (CLAMP), in which the fluorescence signal is amplified by an enzymatic reaction that strongly facilitates the detection of cell surface proteins on living cells.

View Article and Find Full Text PDF

The inability to resolve the exact temporal relationship between two pivotal events in Earth history, the Paleoproterozoic Great Oxidation Event (GOE) and the first "snowball Earth" global glaciation, has precluded assessing causality between changing atmospheric composition and ancient climate change. Here we present temporally resolved quadruple sulfur isotope measurements (δS, ∆S, and ∆S) from the Paleoproterozoic Seidorechka and Polisarka Sedimentary Formations on the Fennoscandian Shield, northwest Russia, that address this issue. Sulfides in the former preserve evidence of mass-independent fractionation of sulfur isotopes (S-MIF) falling within uncertainty of the Archean reference array with a ∆S/∆S slope of -1.

View Article and Find Full Text PDF

Rationale: Doubly substituted isotope species ("clumped" isotopes) can provide insights into the biogeochemical history of a molecule, including its temperature of formation and/or its (bio)synthetic pathway. Here, we propose a new fluorination method for the measurement of C- C species in C molecules using a conventional isotope ratio mass spectrometer. Target molecules include ethane, ethene and ethanol.

View Article and Find Full Text PDF

Hydrothermal systems, including terrestrial hot springs, contain diverse geochemical conditions that vary over short spatial scales due to progressive interactions between reducing hydrothermal fluids, the oxygenated atmosphere, and, in some cases, seawater. At Jinata Onsen on Shikinejima Island, Japan, an intertidal, anoxic, iron-rich hot spring mixes with the oxygenated atmosphere and seawater over short spatial scales, creating diverse chemical potentials and redox pairs over a distance of ~10 m. We characterized geochemical conditions along the outflow of Jinata Onsen as well as the microbial communities present in biofilms, mats, and mineral crusts along its traverse using 16S rRNA gene amplicon and genome-resolved shotgun metagenomic sequencing.

View Article and Find Full Text PDF

Microbial anaerobic oxidation of hydrocarbons is a key process potentially involved in a myriad of geological and biochemical environments yet has remained notoriously difficult to identify and quantify in natural environments. We performed position-specific carbon isotope analysis of propane from cracking and incubation experiments. Anaerobic bacterial oxidation of propane leads to a pronounced and previously unidentified C enrichment in the central position of propane, which contrasts with the isotope signature associated with the thermogenic process.

View Article and Find Full Text PDF

We have developed three types of lipid droplet (LD)-specific fluorescent probes for live-cell imaging, Lipi-Blue, Lipi-Green, and Lipi-Red, which exhibit fluorescence upon being incorporated into LDs both of living and of fixed cells. These Lipi-probes are LD-specific probes that contain a pyrene or perylene group as a fluorescent scaffold and can be used to observe dynamics of LD in live cells and also interrelations with other organelles by simultaneous staining with multiple organelle-specific probes. Additionally, Lipi-Blue and Lipi-Green allow monitoring LDs in live cells even for 48 h after the staining.

View Article and Find Full Text PDF

Aliphatic C-H bonds are one of the major organic signatures detected in Proterozoic organic microfossils, and their origin is a topic of interest. To investigate the influence of the presence of silica on the thermal alteration of aliphatic C-H bonds in prokaryotic cells during diagenesis, cyanobacteria Synechocystis sp. PCC6803 were heated at temperatures of 250-450°C.

View Article and Find Full Text PDF

Wächtershäuser's proposal of the autotrophic origin of life theory and subsequent laboratory demonstrations of relevant organic reactions have opened a new gate for the exploration of the origin of life. However, this scenario remains controversial because, at present, it requires a high pressure of CO as a source of carbon and reducing energy, although CO must have been a trace C species on the Hadean Earth. We show that, simulating a geoelectrochemical environment in deep-sea hydrothermal fields, CO production with up to ~40% Faraday efficiency was attainable on CdS in CO-saturated NaCl solution at ≤-1 V (versus the standard hydrogen electrode).

View Article and Find Full Text PDF

We have developed two types of fluorescent probes, DALGreen and DAPGreen, for monitoring autophagy, that exhibit fluorescence upon being incorporated into autophagosomes. DALGreen enhances its fluorescence at acidic pH, which is favorable for monitoring late-phase autophagy, whereas DAPGreen remains fluorescent with almost constant brightness during the autophagic process. With these probes that stain autophagosomes as they are being formed, the real-time change of autophagic phenomena of live cells may be traced, which is an advantage over conventional approaches with small molecules that stain mature autophagosomes.

View Article and Find Full Text PDF

Microbial sulfate reduction is among the most ubiquitous metabolic processes on earth. The oldest evidence of microbial sulfate reduction appears in the ca. 3.

View Article and Find Full Text PDF

Background: A brain single-photon emission computed tomography (SPECT) system using cadmium telluride (CdTe) solid-state detectors was previously developed. This CdTe-SPECT system is suitable for simultaneous dual-radionuclide imaging due to its fine energy resolution (6.6 %).

View Article and Find Full Text PDF

Approximately 140 million years ago, the Indian plate separated from Gondwana and migrated by almost 90° latitude to its current location, forming the Himalayan-Tibetan system. Large discrepancies exist in the rate of migration of Indian plate during Phanerozoic. Here we describe a new approach to paleo-latitudinal reconstruction based on simultaneous determination of carbonate formation temperature and δ(18)O of soil carbonates, constrained by the abundances of (13)C-(18)O bonds in palaeosol carbonates.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: