Background: Exposure to harmful and potentially harmful constituents in cigarette smoke is a risk factor for cardiovascular and respiratory diseases. Tobacco products that could reduce exposure to these constituents have been developed. However, the long-term effects of their use on health remain unclear.
View Article and Find Full Text PDFA novel tobacco vapor product (NTV) contains tobacco leaves and generates nicotine-containing aerosols using heating elements. Subchronic biological effects have been evaluated previously using three-dimensional bronchial epithelial model cells by repeated exposure to cigarette smoke (CS) and the NTV aerosols; however, the intracellular exposure characteristics have not been studied in detail. In this study, cells were initially exposed to an aqueous extract (AqE) of cigarette smoke (CS) at two concentration levels, and the cell lysate underwent untargeted analysis by LC-high resolution mass spectrometry to determine the exogenous compounds present in the cells.
View Article and Find Full Text PDFCigarette smoke (CS) is a major risk factor in the development of chronic inflammatory lung diseases such as chronic obstructive pulmonary disease. A comprehensive investigation of the biological impacts of chronic CS exposure on lung tissue is therefore important for understanding the pathogenesis of lung disease. We used three-dimensional (3D) organotypic human bronchial tissue cultures and metabolomics, transcriptomics, and proteomics to investigate changes in biological processes affected by repeated whole-CS exposure.
View Article and Find Full Text PDFThe use of novel tobacco- and nicotine-containing vapor products that do not combust tobacco leaves is on the rise worldwide. The emissions of these products typically contain lower numbers and levels of potentially harmful chemicals compared with conventional cigarette smoke. These vapor products may therefore elicit fewer adverse biological effects.
View Article and Find Full Text PDFRecent advancements in in vitro exposure systems and cell culture technology enable direct exposure to cigarette smoke (CS) of human organotypic bronchial epithelial cultures. MucilAir organotypic bronchial epithelial cultures were exposed, using a Vitrocell exposure system, to mainstream aerosols from the 3R4F cigarette or from a recently developed novel tobacco vapor product (NTV). The exposure aerosol dose was controlled by dilution flow and the number of products smoked; there were five exposure conditions for 3R4F smoke and three for NTV vapor.
View Article and Find Full Text PDFThe reactive oxygen species generated by an aqueous extract of the particulate phase of cigarette smoke were evaluated by an electron spin resonance (ESR) analysis, using spin-trapping agents, and by comparing with model reaction systems. The ESR signals of DMPO-OH were detected from the extract by using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). These signals were eliminated by adding superoxide dismutase, but hardly by catalase.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
October 2009
An analysis of hydrogen peroxide in an aqueous extract of cigarette smoke, which contains many redox-active compounds, requires a method with high selectivity. An aqueous extract of the particulate phase of cigarette smoke was analyzed by HPLC with an electrochemical detector (ECD). Samples were prepared by collecting the particulate phase of the cigarette smoke on a glass fiber filter and extracting it with a phosphate buffer.
View Article and Find Full Text PDFSingle puffs of cigarette smoke with a wide continuous range of volatility are directly analyzed using a new system. The system consists of a smoking machine, an online thermal desorption system (TDS), and a multidimensional gas chromatograph-mass spectrometer (MDGC-MS) system. The online TDS with the smoking machine collects the single-puff cigarette smoke with glass beads as the cryogenic adsorbent.
View Article and Find Full Text PDF