Publications by authors named "Yuichiro Nomura"

The addition of poly(UG) ('pUG') repeats to 3' termini of mRNAs drives gene silencing and transgenerational epigenetic inheritance in the metazoan Caenorhabditis elegans. pUG tails promote silencing by recruiting an RNA-dependent RNA polymerase (RdRP) that synthesizes small interfering RNAs. Here we show that active pUG tails require a minimum of 11.

View Article and Find Full Text PDF

Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits.

View Article and Find Full Text PDF

U6 snRNA undergoes post-transcriptional 3' end modification prior to incorporation into the active site of spliceosomes. The responsible exoribonuclease is Usb1, which removes nucleotides from the 3' end of U6 and, in humans, leaves a 2',3' cyclic phosphate that is recognized by the Lsm2-8 complex. Saccharomycescerevisiae Usb1 has additional 2',3' cyclic phosphodiesterase (CPDase) activity, which converts the cyclic phosphate into a 3' phosphate group.

View Article and Find Full Text PDF

Archaeosine (G), 7-formamidino-7-deazaguanosine, is an archaea-specific modified nucleoside found at the 15th position of tRNAs. In Euryarchaeota, 7-cyano-7-deazaguanine (preQ)-containing tRNA (qN-tRNA), synthesized by archaeal tRNA-guanine transglycosylase (ArcTGT), has been believed to be converted to G-containing tRNA (G-tRNA) by the paralog of ArcTGT, ArcS. However, we found that several euryarchaeal ArcSs have lysine transfer activity to qN-tRNA to form qkN-tRNA, which has a preQ lysine adduct as a base.

View Article and Find Full Text PDF

The critical flicker-fusion frequency (CFF), defined as the frequency at which a flickering light is indistinguishable from a continuous light, is a useful measure of visual temporal resolution. The mouse CFF has been studied by electrophysiological approaches such as recordings of the electroretinogram (ERG) and the visually evoked potential (VEP), but it has not been measured behaviorally. Here we estimated the mouse CFF by using a touchscreen based operant system.

View Article and Find Full Text PDF

Post-transcriptional modification of snRNA is central to spliceosome function. Usb1 is an exoribonuclease that shortens the oligo-uridine tail of U6 snRNA, resulting in a terminal 2',3' cyclic phosphate group in most eukaryotes, including humans. Loss of function mutations in human Usb1 cause the rare disorder poikiloderma with neutropenia (PN), and result in U6 snRNAs with elongated 3' ends that are aberrantly adenylated.

View Article and Find Full Text PDF

Archaeosine (G(+)), which is found only at position 15 in many archaeal tRNA, is formed by two steps, the replacement of the guanine base with preQ0 by archaeosine tRNA-guanine transglycosylase (ArcTGT) and the subsequent modification of preQ0 to G(+) by archaeosine synthase. However, tRNA(Leu) from Thermoplasma acidophilum, a thermo-acidophilic archaeon, exceptionally has two G(+)13 and G(+)15 modifications. In this study, we focused on the biosynthesis mechanism of G(+)13 and G(+)15 modifications in this tRNA(Leu).

View Article and Find Full Text PDF

In many archaeal tRNAs, archaeosine is found at position 15. During archaeosine biosynthesis, archaeal tRNA-guanine transglycosylase (ArcTGT) first replaces the guanine base at position 15 with 7-cyano-7-deazaguanine (preQ0). In this study, we investigated whether modified nucleosides in tRNA substrates would affect ArcTGT incorporation of preQ0.

View Article and Find Full Text PDF

Many archaeal tRNAs have archaeosine (G(+)) at position 15 in the D-loop and this is thought to strengthen the tertiary interaction with C48 in the V-loop. In the first step of G(+) biosynthesis, archaeosine tRNA-guanine transglycosylase (ArcTGT)(1) catalyzes the base exchange reaction from guanine to 7-cyano-7-deazaguanine (preQ(0)). ArcTGT is classified into full-size or split types, according to databases of genomic information.

View Article and Find Full Text PDF

At least two separate enzymes, an endonuclease and a ligase, are thought to be involved in the tRNA splicing pathway. The yeast and archaeal endonucleases acting in the first step of tRNA splicing commonly produce 2', 3'-cyclic phosphate and 5' hydroxy group at the exon-intron borders. Despite this similarity in the first step of tRNA splicing, the subsequent mechanism of archaeal splicing pathway has not been elucidated yet.

View Article and Find Full Text PDF