The lipid composition of the host cell membrane is one of the key determinants of the entry of enveloped viruses into cells. To elucidate the detailed mechanisms behind the cell entry of rubella virus (RuV), one of the enveloped viruses, we searched for host factors involved in such entry by using CRISPR/Cas9 genome-wide knockout screening, and we found sphingomyelin synthase 1 (SMS1), encoded by the gene, as a candidate. RuV growth was strictly suppressed in -knockout cells and was completely recovered by the overexpression of enzymatically active SMS1 and partially recovered by that of SMS2, another member of the SMS family, but not by that of enzymatically inactive SMS1.
View Article and Find Full Text PDFMany efforts have been dedicated to the discovery of antiviral drug candidates against the mumps virus (MuV); however, no specific drug has yet been approved. The development of efficient screening methods is a key factor for the discovery of antiviral candidates. In this study, we evaluated a screening method using an green fluorescent protein-expressing MuV infectious molecular clone.
View Article and Find Full Text PDFDuring the emergence of novel coronavirus 2019 (nCoV) outbreak in Wuhan city, China at the end of 2019, there was movement of many airline travelers between Wuhan and Japan, suggesting that the Japanese population was at high risk of infection by the virus. Hence, we urgently developed diagnostic systems for detection of 2019 nCoV. Two nested RT-PCR and two real-time RT-PCR assays were adapted for use in Japan.
View Article and Find Full Text PDFTwo viral nonstructural proteins, p150 and p90, are expressed in rubella virus (RUBV)-infected cells and mediate viral genome replication, presumably using various host machineries. Molecular chaperones are critical host factors for the maintenance of cellular proteostasis, and certain viral proteins use this chaperone system. The RUBV p150 and p90 proteins are generated from a precursor polyprotein, p200, via processing by the protease activity of its p150 region.
View Article and Find Full Text PDFMononegaviruses are promising tools as oncolytic vectors and transgene delivery vectors for gene therapy and regenerative medicine. By using the Magnet proteins, which reversibly heterodimerize upon blue light illumination, photocontrollable mononegaviruses (measles and rabies viruses) were generated. The Magnet proteins were inserted into the flexible domain of viral polymerase, and viruses showed strong replication and oncolytic activities only when the viral polymerases were activated by blue light illumination.
View Article and Find Full Text PDFThe regulation of paramyxovirus RNA synthesis by host proteins is poorly understood. Here, we identified a novel regulation mechanism of paramyxovirus RNA synthesis by the Hsp90 co-chaperone R2TP complex. We showed that the R2TP complex interacted with the paramyxovirus polymerase L protein and that silencing of the R2TP complex led to uncontrolled upregulation of mumps virus (MuV) gene transcription but not genome replication.
View Article and Find Full Text PDFHuman metapneumovirus (HMPV) has been a notable etiological agent of acute respiratory infection in humans, but it was not discovered until 2001, because HMPV replicates only in a limited number of cell lines and the cytopathic effect (CPE) is often mild. To promote the study of HMPV, several groups have generated green fluorescent protein (GFP)-expressing recombinant HMPV strains (HMPVGFP). However, the growing evidence has complicated the understanding of cell line specificity of HMPV, because it seems to vary notably among HMPV strains.
View Article and Find Full Text PDFParamyxoviral RNAs are synthesized by a viral RNA-dependent RNA polymerase (RdRp) consisting of the large (L) protein and its cofactor phosphoprotein (P protein). The L protein is a multifunctional protein that catalyzes RNA synthesis, mRNA capping, and mRNA polyadenylation. Growing evidence shows that the stability of several paramyxovirus L proteins is regulated by heat shock protein 90 (Hsp90).
View Article and Find Full Text PDFUnlabelled: Mumps virus (MuV) is an airborne virus that causes a systemic infection in patients. In vivo, the epithelium is a major replication site of MuV, and thus, the mode of MuV infection of epithelial cells is a subject of interest. Our data in the present study showed that MuV entered polarized epithelial cells via both the apical and basolateral surfaces, while progeny viruses were predominantly released from the apical surface.
View Article and Find Full Text PDFUnlabelled: Mumps virus (MuV) infection induces formation of cytoplasmic inclusion bodies (IBs). Growing evidence indicates that IBs are the sites where RNA viruses synthesize their viral RNA. However, in the case of MuV infection, little is known about the viral and cellular compositions and biological functions of the IBs.
View Article and Find Full Text PDFInhibitor of κB kinase ε (IKKε) and TANK binding kinase 1 (TBK1), so-called non-canonical IKKs or IKK-related kinases, are involved in the cellular innate immunity by inducing type I IFNs. Two kinases commonly phosphorylate transcription factors IRF3 and IRF7 in type I IFN production pathway. In contrast to TBK1, underlying mechanisms of IKKε activation and regions required for activation of downstream molecules are poorly understood.
View Article and Find Full Text PDFUnlabelled: Proteolytic cleavage of the hemagglutinin (HA) protein is essential for influenza A virus (IAV) to acquire infectivity. This process is mediated by a host cell protease(s) in vivo. The type II transmembrane serine protease TMPRSS2 is expressed in the respiratory tract and is capable of activating a variety of respiratory viruses, including low-pathogenic (LP) IAVs possessing a single arginine residue at the cleavage site.
View Article and Find Full Text PDFCanine distemper virus (CDV) becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein.
View Article and Find Full Text PDFMany viruses use the host trafficking system at a variety of their replication steps. Measles virus (MV) possesses a nonsegmented negative-strand RNA genome that encodes three components of the ribonucleoprotein (RNP) complex (N, P, and L), two surface glycoproteins, a matrix protein, and two nonstructural proteins. A subset of immune cells and polarized epithelial cells are in vivo targets of MV, and MV is selectively released from the apical membrane of polarized epithelial cells.
View Article and Find Full Text PDFRecent outbreaks in monkeys have proven that canine distemper virus (CDV) causes diseases in a wide range of mammals. CDV uses SLAM and nectin4 as receptors to replicate in susceptible animals. Here, we show that human nectin4, but not human SLAM, is fully functional as a CDV receptor.
View Article and Find Full Text PDFSubacute sclerosing panencephalitis (SSPE) is a fatal sequela associated with measles and is caused by persistent infection of the brain with measles virus (MV). The SI strain was isolated in 1976 from a patient with SSPE and shows neurovirulence in animals. Genome nucleotide sequence analyses showed that the SI strain genome possesses typical genome alterations for SSPE-derived strains, namely, accumulated amino acid substitutions in the M protein and cytoplasmic tail truncation of the F protein.
View Article and Find Full Text PDFIn bovine Mx1, only an amino acid substitution between Ile and Met at position 120 was detected by the nucleotide sequence and mismatched PCR-RFLP technique. The Ile variant was assumed to distribute mainly in the bovine population since the gene frequency was 79.3%.
View Article and Find Full Text PDFMeasles virus (MV), a member of the family Paramyxoviridae, is a nonsegmented negative-strand RNA virus. The RNA helicases retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are differentially involved in the detection of cytoplasmic viral RNAs and induction of alpha/beta interferon (IFN-alpha/beta). RIG-I is generally believed to play a major role in the recognition of paramyxoviruses, whereas many viruses of this family produce V proteins that can inhibit MDA5.
View Article and Find Full Text PDFThe P, V, and C proteins of measles virus are encoded in overlapping reading frames of the P gene, which makes it difficult to analyze the functions of the individual proteins in the context of virus infection. We established a system to analyze the C protein independently from the P and V proteins by placing its gene in an additional transcription unit between the H and L genes. Analyses with this system indicated that a highly attenuated Edmonston lineage vaccine strain encodes a fully functional C protein, and the P and/or V protein is involved in the attenuated phenotype.
View Article and Find Full Text PDFThe genome of measles virus (MV) is encapsidated by the nucleocapsid (N) protein and associates with RNA-dependent RNA polymerase to form the ribonucleoprotein complex. The matrix (M) protein is believed to play an important role in MV assembly by linking the ribonucleoprotein complex with envelope glycoproteins. Analyses using a yeast two-hybrid system and coimmunoprecipitation in mammalian cells revealed that the M protein interacts with the N protein and that two leucine residues at the carboxyl terminus of the N protein (L523 and L524) are critical for the interaction.
View Article and Find Full Text PDFThe bovine Mx1 promoter region was found to contain 4 IFN-stimulated response elements (ISREs), 7 GC boxes, 2 IL-6 responsive elements, 2 NFκB-binding sites and 2 AP-1-binding sites. Among Holstein, Charolai, and Brahman breeds, 5 nucleotide substitutions were detected in the promoter region. After the Mx1 promoter region from Holstein had been constructed with pGL-basic expression vector, the transfected cells showed promoter activity after IFN induction.
View Article and Find Full Text PDFMeasles is an acute febrile infectious disease with high morbidity and mortality. The genome of measles virus (MV), the causative agent, encodes two accessory products, V and C proteins, that play important roles in MV virulence. The V but not the C protein of the IC-B strain (a well-characterized virulent strain of MV) has been shown to block the Jak/Stat signaling pathway and counteract the cellular interferon (IFN) response.
View Article and Find Full Text PDFHuman metapneumovirus (HMPV) is a major causative agent of severe bronchiolitis and pneumonia. Its fusion (F) protein must be cleaved by host proteases to cause membrane fusion, a critical step for virus infection. By generating Vero cells constitutively expressing the transmembrane serine protease TMPRSS2 and green fluorescent protein-expressing recombinant HMPV, we show that TMPRSS2, which is expressed in the human lung epithelium, cleaves the HMPV F protein efficiently and supports HMPV multiplication.
View Article and Find Full Text PDFIn addition to the phosphoprotein, the P gene of measles virus (MV) also encodes the V and C proteins by an RNA editing process and by alternative initiation of translation in a different reading frame, respectively. Although the MV C protein is required for efficient MV replication in vivo and in some cultured cells, its exact functions in virus infection are currently unclear. Here, we report that a recombinant MV lacking the C protein (MVDeltaC) grew poorly in a human cell line possessing the intact interferon (IFN) pathway and that this growth defect was associated with reduced viral translation and genome replication.
View Article and Find Full Text PDF