The cell structure has been studied using light and electron microscopies for centuries, and it is assumed that the whole structure is clarified by now. Little quantitative and three-dimensional analysis of cell structure, however, has been undertaken. We have coined a new word, 'structome', by combining 'structure' and '-ome', and defined it as the 'quantitative and three-dimensional structural information of a whole cell at the electron microscopic level'.
View Article and Find Full Text PDFA method was proposed for improving preservation of ultrastructures of deep-sea microorganisms by using rapid-freeze freeze-substitution after glutaraldehyde fixation. This method produced clear high-resolution images of cells appearing in their natural state, close to the quality of images obtained by rapidly freezing freeze-substituted specimens of living cells. The method may be useful for observing any microorganism when rapid freezing of living samples is difficult and only glutaraldehyde fixation can be carried out.
View Article and Find Full Text PDFIt is known that cell wall remodeling and the salvaging pathway act to compensate for an impaired or a damaged cell wall. Lately, it has been indicated that this mechanism is partly required for resistance to the glucan synthesis inhibitor echinocandin. While cell wall remodeling has been described in mutants of glucan or mannan synthesis, it has not yet been reported in a chitin synthesis mutant.
View Article and Find Full Text PDFProtoplast regeneration of a wild-type and two mutant strains of Candida glabrata defective in CHS3 homologues encoding class IV chitin synthase in Saccharomyces cerevisiae was examined by scanning and negative-staining electron microscopy. In the wild-type strain, small particles and short filaments appeared on the protoplast surface at 10 min, filamentous materials covered the entire surface of the protoplast at 1 h, granular materials started filling interspaces of filamentous materials at 2 h and regeneration was completed at 6 h. The filamentous materials consisted of microfibrils of various widths ranging from ≤5 to 40 nm, and composed of β-glucan.
View Article and Find Full Text PDFJ Electron Microsc (Tokyo)
August 2009
A smart and efficient method for freeze substitution and serial sectioning of yeast cells is described. Yeast cells were placed in a single layer between two copper disks, rapidly frozen, freeze substituted and embedded in an epoxy resin. The cell layer was re-embedded by the same resin, the surface trimmed leaving 1 mum above the cell layer, and serially sectioned.
View Article and Find Full Text PDF