Publications by authors named "Yui Ogawa"

Citizen science is an important approach to monitoring for biodiversity conservation because it allows for data acquisition or analysis on a scale that is not possible for researchers alone. In citizen science projects, the use of online training is increasing to improve such skills. However, the effectiveness of quiz-style online training, assumed to be efficient to enhance participants' skills, has not been evaluated adequately on species identification for citizen science biodiversity monitoring projects.

View Article and Find Full Text PDF

Multiple bone disorders due to mutations in the human noggin (NOG) causes a variety of phenotypes. Hearing impairment due to stapes ankylosis secondary to bony degeneration is also a feature of these syndromes. We describe the case of an individual in a Japanese family with conductive hearing loss due to stapes ankylosis and hyperopia and dactylosymphysis.

View Article and Find Full Text PDF

Objective: Pneumococcal conjugate vaccines (PCVs) have been reported to reduce the incidence of myringotomy with tympanostomy tube insertion (MTTI) in children. However, little information is available focusing specific ages. We examined the prophylactic efficacy of PCVs on the onset of complex otitis media (ComOM) that requires MTTI.

View Article and Find Full Text PDF

Objective: Eyes absent 4 (EYA4) is the causative gene of autosomal dominant non-syndromic hereditary hearing loss, DFNA10. We aimed to identify a copy number variation of EYA4 in a non-syndromic sensory neural hearing loss pedigree.

Family And Clinical Evaluation: A Japanese family showing late-onset and progressive hearing loss was evaluated.

View Article and Find Full Text PDF

The E2F transcription factors (TFs), which control the progression of the cell cycle in response to DNA-damage and various stresses, are known to interact with a tumour suppressor, Retinoblastoma 1 (RB1). We previously showed that the response of the human RB1 promoter to a 12-O-tetradecanoylphorbol-13-acetate (TPA) in HL-60 cells is mediated by a duplicated GGAA motif, which is also present in the 5'-upstream of the E2F family genes. The motifs are especially rich in the 5'-upstream of the E2F4 gene.

View Article and Find Full Text PDF

The ability to control the crystal orientation of 2D van der Waals (vdW) layered materials grown on large-scale substrates is crucial for tailoring their electrical properties, as well as for integration of functional 2D devices. In general, multiple orientations, i.e.

View Article and Find Full Text PDF

Three-dimensional (3D) graphene architectures are of great interest as applications in flexible electronics and biointerfaces. In this study, we demonstrate the facile formation of predetermined 3D polymeric microstructures simply by transferring monolayer graphene. The graphene adheres to the surface of polymeric films via noncovalent π-π stacking bonding and induces a sloped internal strain, leading to the self-rolling of 3D microscale architectures.

View Article and Find Full Text PDF

Scanning electron microscopes (SEMs) require a high vacuum environment to generate and shape an electron beam for imaging; however, the vacuum conditions greatly limit the nature of specimens that can be examined. From a purely scattering physics perspective, it is not necessary to place the specimen inside the vacuum chamber-the mean free paths (MFPs) for electron scattering in air at typical SEM beam voltages are 50-100 μm. This is the idea behind the airSEM, which removes the specimen vacuum chamber from the SEM and places the sample in air.

View Article and Find Full Text PDF

Osteoporosis is a serious public health problem characterized by low bone density and deterioration of the bone microarchitecture. Current treatment options target either osteoclast resorption or osteoblast formation. It has been reported that berberine, a close structural analog of palmatine, inhibited bone loss in an osteoporosis model.

View Article and Find Full Text PDF

Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties.

View Article and Find Full Text PDF

Background/aim: Receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG), regulate the cognate receptor RANK on osteoclast precursor cells. Herein we examined the inhibitory effects of palmatine on bone metabolism using ovariectomized (OVX) mice.

Materials And Methods: The first experimentaI set was designed to histologically and biochemically examine mice randomly divided into four groups: sham-operated, OVX, and OVX-palmatine intake groups (1 mg/kg and 10 mg/kg).

View Article and Find Full Text PDF

We report the scalable growth of aligned graphene and hexagonal boron nitride on commercial copper foils, where each film originates from multiple nucleations yet exhibits a single orientation. Thorough characterization of our graphene reveals uniform crystallographic and electronic structures on length scales ranging from nanometers to tens of centimeters. As we demonstrate with artificial twisted graphene bilayers, these inexpensive and versatile films are ideal building blocks for large-scale layered heterostructures with angle-tunable optoelectronic properties.

View Article and Find Full Text PDF

During the chemical vapor deposition (CVD) growth of graphene, graphene domains grown on a Cu surface merge together and form a uniform graphene sheet. For high-performance electronics and other applications, it is important to understand the interfacial structure of the merged domains, as well as their influence on the physical properties of graphene. We synthesized large hexagonal graphene domains with controlled orientations on a heteroepitaxial Cu film and studied the structure and properties of the interfaces between the domains mainly merged with the same angle.

View Article and Find Full Text PDF

Graphene nanoribbons (GNRs) are a promising material for electronic applications, because quantum confinement in a one-dimensional nanostructure can potentially open the band gap of graphene. However, it is still a challenge to synthesize high-quality GNRs by a bottom-up approach without relying on lithographic techniques. In this work, we demonstrate lattice-oriented catalytic growth of single-layer GNRs on the surface of a heteroepitaxial Ni film.

View Article and Find Full Text PDF

Dense arrays of aligned graphene nanoribbons (GNRs) are fabricated by substrate-controlled etching of large-area single-layer graphene. An adequate choice of etching substrate and catalyst deposition method allows densities up to 25 nanoribbons μm(-1) to be obtained with average widths of 19 nm. The efficacy of the method is evidenced by the high on/off ratios of back-gated transistors made with these GNRs, which can go up to 5000.

View Article and Find Full Text PDF

For electronic applications, synthesis of large-area, single-layer graphene with high crystallinity is required. One of the most promising and widely employed methods is chemical vapor deposition (CVD) using Cu foil/film as the catalyst. However, the CVD graphene is generally polycrystalline and contains a significant amount of domain boundaries that limit intrinsic physical properties of graphene.

View Article and Find Full Text PDF