Phys Rev Lett
October 2024
Magnetic excitations play a crucial role in understanding the color confinement of 4D Yang-Mills theory, and we have the monopole and the center vortex as plausible candidates to explain its mechanism. Under suitable compactified setups of 4D Yang-Mills theory, we can achieve different weakly coupled descriptions of confinement phenomena: The monopole mechanism takes place on R^{3}×S^{1} with the double-trace deformation, and the center-vortex mechanism is effective on R^{2}×T^{2} with the 't Hooft flux. We unify these two semiclassical descriptions by showing the explicit relation between the monopole and center vortex.
View Article and Find Full Text PDFSmall-angle scattering (SAS) is a key experimental technique for analyzing nanoscale structures in various materials. In SAS data analysis, selecting an appropriate mathematical model for the scattering intensity is critical, as it generates a hypothesis of the structure of the experimental sample. Traditional model selection methods either rely on qualitative approaches or are prone to overfitting.
View Article and Find Full Text PDFSome gauge theories with a spontaneously broken U(1) symmetry exhibit fractional Aharonov-Bohm (AB) phases around vortices in the Higgs regime. We discuss continuity between confining and Higgs regimes in such gauge theories with fundamental matter fields, focusing on the AB phases. By explicit calculations in relevant lattice models, we demonstrate that the AB phase is smoothly connected between the confining and Higgs regimes, supporting the Higgs-confinement continuity.
View Article and Find Full Text PDFNanofiber membranes have outstanding potential for filtration applications due to their great specific surface area, high porosity, and modifiable structure. Compared to conventional membranes, nanofiber membranes offer substantial high flux and high rejection ratios. This paper provides a comprehensive analysis on the filtration performance of plasma treatment on the polyacrylonitrile nanofiber membrane.
View Article and Find Full Text PDFONSEN is a heat-activated LTR retrotransposon in Arabidopsis thaliana. Screens to identify transcriptional regulatory factors of ONSEN revealed a SWI/SNF-like chromatin remodeling protein, DRD1, which cooperates with plant-specific RNA polymerase and is involved in RNA-directed DNA methylation. ONSEN transcript level was increased in the drd1 mutant relative to wild-type under heat stress, indicating that DRD1 plays a significant role in the silencing of activated ONSEN under the stress condition.
View Article and Find Full Text PDFMost transposable elements (TEs) are tightly regulated by epigenetic mechanisms such as DNA methylation. RNA-directed DNA methylation (RdDM) is a major control mechanism of TE silencing in plants. We analyzed the transposition activity of a heat-responsive retrotransposon, ONSEN, in Arabidopsis thaliana.
View Article and Find Full Text PDF