In terms of the phenomenon of nonuniformity adsorption energy between methane and a natural heterogeneous coal surface, a heterogeneous potential well model is established in this study based on adsorption science and molecular dynamics theories. This model describes the methane adsorption positions in coal pores as a three-dimensional space composed of adsorption equipotential surfaces with varying depths of potential well, which emphasizes the heterogeneous distribution of methane adsorption potential well depths in coal and accurately describes the spatial distribution and energy states of methane molecules during methane adsorption and desorption in naturally heterogeneous coal. By taking the residual sum of squares (RSS) and Pearson correlation coefficient as indicators, the fitting accuracies of the Langmuir model and the heterogeneous potential well model for isothermal adsorption and desorption curves are compared so that the superiority of the heterogeneous potential well model in describing the adsorption and desorption of methane in natural coal is confirmed.
View Article and Find Full Text PDFStudying key leaf functional traits is crucial for understanding plant resource utilization strategies and growth. To explore the patterns and driving factors of key leaf functional traits in forests along elevational gradients under global change, we collected survey data from 697 forests across China from 2008 to 2020. This study examined the elevational patterns of Specific Leaf Area (SLA, m²/kg), Leaf Dry Matter Content (LDMC, g/g), Leaf Nitrogen (LN, mg/g), and Leaf Phosphorus (LP, mg/g), and their responses to climate, soil nutrients, and stand factors.
View Article and Find Full Text PDFSpecific leaf area (SLA) and leaf dry matter content (LDMC) are key leaf functional traits often used to reflect plant resource utilization strategies and predict plant responses to environmental changes. In general, grassland plants at different elevations exhibit varying survival strategies. However, it remains unclear how grassland plants adapt to changes in elevation and their driving factors.
View Article and Find Full Text PDFVegetation resilience is a key concept for understanding ecosystem responses to disturbances and is essential for maintaining ecosystem sustainability. However, assessing vegetation resilience remains challenging, especially for areas with significant disturbances and ecological restoration, such as surface coal mine ecosystems. Vegetation resilience assessment requires a combination of disturbance magnitude, recovery magnitude, and recovery time.
View Article and Find Full Text PDFSpecific leaf area (SLA) and leaf dry matter content (LDMC) are key leaf functional traits commonly used to reflect tree resource utilization strategies and predict forest ecosystem responses to environmental changes. Previous research on tree resource utilization strategies (SLA and LDMC) primarily focused on the species level within limited spatial scales, making it crucial to quantify the spatial variability and driving factors of these strategies. Whether there are discrepancies in resource utilization strategies between trees in planted and natural forests, and the dominant factors and mechanisms influencing them, remain unclear.
View Article and Find Full Text PDFThe allocation of plant biomass above and below ground reflects their strategic resource utilization, crucial for understanding terrestrial carbon flux dynamics. In our comprehensive study, we analyzed biomass distribution patterns in 580 broadleaved and 345 coniferous forests across China from 2005 to 2020, aiming to discern spatial patterns and key drivers of belowground biomass proportion (BGBP) in these ecosystems. Our research revealed a consistent trend: BGBP decreases from northwest to southeast in both forest types.
View Article and Find Full Text PDFAltern Ther Health Med
February 2024
The allocation of biomass reflects a plant's resource utilization strategy and is significantly influenced by climatic factors. However, it remains unclear how climate factors affect the aboveground and belowground biomass allocation patterns on macro scales. To address this, a study was conducted using aboveground and belowground biomass data for 486 species across 294 sites in China, investigating the effects of climate change on biomass allocation patterns.
View Article and Find Full Text PDFBiomass in forests sequesters substantial amounts of carbon; although the contribution of aboveground biomass has been extensively studied, the contribution of belowground biomass remains understudied. Investigating the forest biomass allocation is crucial for understanding the impacts of global change on carbon allocation and cycling. Moreover, the question of how climate factors affect biomass allocation in natural and planted forests remains unresolved.
View Article and Find Full Text PDFPlant functional traits are a representation of plant resource utilization strategies. Plants with higher specific leaf area (SLA) and lower leaf dry matter content (LDMC) exhibit faster investment-return resource utilization strategies. However, the distribution patterns and driving factors of plant resource utilization strategies at the macroscale are rarely studied.
View Article and Find Full Text PDF