Publications by authors named "Yuhuang Wang"

Organic color centers (OCCs), generated by the covalent functionalization of single-walled carbon nanotubes, have been exploited for chemical sensing, bioimaging, and quantum technologies. However, monovalent OCCs can assume at least 6 different bonding configurations on the sp carbon lattice of a chiral nanotube, resulting in heterogeneous OCC photoluminescence emissions. Herein, we show that a heat-activated [2 + 2] cycloaddition reaction enables the synthesis of divalent OCCs with a reduced number of atomic bonding configurations.

View Article and Find Full Text PDF

Objective: To assess the quality of Clinical practice guidelines (CPGs) in the context of diabetic kidney disease (DKD) and determine whether any factors affect the quality.

Methods: We searched eight databases along with five international and national organizations to develop or archive guidelines from their inception to July 2023, with an additional search of medlive.cn.

View Article and Find Full Text PDF

Indistinguishable single photons in the telecom-bandwidth of optical fibers are indispensable for long-distance quantum communication. Solid-state single photon emitters have achieved excellent performance in key benchmarks, however, the demonstration of indistinguishability at room-temperature remains a major challenge. Here, we report room-temperature photon indistinguishability at telecom wavelengths from individual nanotube defects in a fiber-based microcavity operated in the regime of incoherent good cavity-coupling.

View Article and Find Full Text PDF

Quantum defects in single-walled carbon nanotubes promote exciton localization, which enables potential applications in biodevices and quantum light sources. However, the effects of local electric fields on the emissive energy states of quantum defects and how they can be controlled are unexplored. Here, we investigate quantum defect sensitization by engineering an intrinsically disordered protein to undergo a phase change at a quantum defect site.

View Article and Find Full Text PDF
Article Synopsis
  • Atomic defect color centers in solid-state systems could greatly enhance quantum technologies, but creating high-quality defects is challenging.* -
  • A novel DNA-programmable photochemical method allows the creation of organic color-center quantum defects on semiconducting single-walled carbon nanotubes by using halogenated uracil.* -
  • This approach enables precise defect placement and provides significant improvements in photoluminescence, offering potential applications in quantum information, imaging, and sensing technologies.*
View Article and Find Full Text PDF

Surfactants are widely used to disperse single-walled carbon nanotubes (SWCNTs) and other nanomaterials for liquid-phase processing and characterization. Traditional techniques, however, demand high surfactant concentrations, often in the range of 1-2 wt/v% of the solution. Here, we show that optimal dispersion efficiency can be attained at substantially lower surfactant concentrations of approximately 0.

View Article and Find Full Text PDF

Aligned and suspended carbon nanotubes can outperform randomly oriented networks in electronic biosensing and thin-film electronics. However, carbon nanotubes tend to bundle and form random networks. Here, we show that carbon nanotubes spontaneously align in an ammonium deoxycholate surfactant gel even under low shear forces, allowing direct writing and printing of nanotubes into electrically conducting wires and aligned thin layers across trenches.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a malignant tumor with a very high incidence which ranks second after lung cancer. Although there are many drugs available for the treatment of PCa, their effectiveness and anti-cancer mechanisms still need to be explored. Atomic force microscopy (AFM) could characterize minor morphological changes on cell surfaces, which provides an effective method to explore the interaction between drugs and cells at the nanometer level and further investigate the mechanisms for treating PCa.

View Article and Find Full Text PDF

Polydimethylsiloxane (PDMS)-the simplest and most common silicone compound-exemplifies the central characteristics of its class and has attracted tremendous research attention. The development of PDMS-based materials is a vivid reflection of the modern industry. In recent years, PDMS has stood out as the material of choice for various emerging technologies.

View Article and Find Full Text PDF

Photoactuated pens have emerged as promising tools for expedient, mask-free, and versatile nanomanufacturing. However, the challenge of effectively controlling individual pens in large arrays for high-throughput patterning has been a significant hurdle. In this study, we introduce novel generations of photoactuated pens and explore the impact of pen architecture on photoactuation efficiency and crosstalk through simulations and experiments.

View Article and Find Full Text PDF

Ethanol is widely used as a precursor in products ranging from drugs to cosmetics. However, distillation of ethanol from aqueous solution is energy intensive and expensive. Here, we show that angstrom-sized nanopores with precisely controlled pore sizes can spontaneously remove water from ethanol-water mixtures through molecular sieving at room temperature and pressure.

View Article and Find Full Text PDF

Autophagy is a cellular process with important functions that drive neurodegenerative diseases and cancers. Lysosomal hyperacidification is a hallmark of autophagy. Lysosomal pH is currently measured by fluorescent probes in cell culture, but existing methods do not allow for quantitative, transient or in vivo measurements.

View Article and Find Full Text PDF

Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores.

View Article and Find Full Text PDF

Localized actuation is an important goal of nanotechnology broadly impacting applications such as programmable materials, soft robotics, and nanolithography. Despite significant recent advances, actuation with high temporal and spatial resolution remains challenging to achieve. Herein, we demonstrate strongly localized photoactuation of polymer pens made of polydimethylsiloxane (PDMS) and surface-functionalized short carbon nanotubes based on a fundamental understanding of the nanocomposite chemistry and device innovations in directing intense light with digital micromirrors to microscale domains.

View Article and Find Full Text PDF

Magnetic resonance-guided microwave ablation (MRI-guided MWA) is a new, minimally invasive ablation method for cancer. This study sought to analyze the clinical value of MRI-guided MWA in non-small cell lung cancer (NSCLC). We compared the precision, efficiency, and clinical efficacy of treatment in patients who underwent MRI-guided MWA or computed tomography (CT)-guided microwave ablation (CT-guided MWA).

View Article and Find Full Text PDF

Single-wall carbon nanotubes in boron nitride (SWCNT@BN) are one-dimensional van der Waals heterostructures that exhibit intriguing physical and chemical properties. As with their carbon nanotube counterparts, these heterostructures can form from different combinations of chiralities, providing rich structures but also posing a significant synthetic challenge to controlling their structure. Enabled by advances in nanotube chirality sorting, clean removal of the surfactant used for solution processing, and a simple method to fabricate free-standing submonolayer films of chirality pure SWCNTs as templates for the BN growth, we show it is possible to directly grow BN on chirality enriched SWCNTs from solution processing to form van der Waals heterostructures.

View Article and Find Full Text PDF

Chemical defects can create organic color centers in the graphitic lattice of single-walled carbon nanotubes. However, the underlying physics remains somewhat of a mystery. Here we show that two sp atomic defects can interact with each other in a way reminiscent of atoms bonding to form molecules.

View Article and Find Full Text PDF

We use time-dependent density functional theory to investigate the possibility of hosting organic color centers in (6, 6) armchair single-walled carbon nanotubes, which are known to be metallic. Our calculations show that in short segments of (6, 6) nanotubes∼5nm in length there is a dipole-allowed singlet transition related to the quantum confinement of charge carriers in the smaller segments. The introduction ofsp3defects to the surface of (6, 6) nanotubes results in new dipole-allowed excited states.

View Article and Find Full Text PDF

Single-walled carbon nanotubes are structurally modified by using a genetic sequence.

View Article and Find Full Text PDF

Aryl diazonium reactions are widely used to covalently modify graphitic electrodes and low-dimensional carbon materials, including the recent creation of organic color centers (OCCs) on single-wall carbon nanotube semiconductors. However, due to the experimental difficulties in resolving small functional groups over extensive carbon lattices, a basic question until now remains unanswered: what group, if any, is pairing with the aryl sp defect when breaking a C═C bond on the sp carbon lattice? Here, we show that water plays an unexpected role in completing the diazonium reaction with carbon nanotubes involving chlorosulfonic acid, acting as a nucleophilic agent that contributes -OH as the pairing group. By simply replacing water with other nucleophilic solvents, we find it is possible to create OCCs that feature an entirely new series of pairing groups, including -OCH, -OCH, -OCH, --OCH, and -NH, which allows us to systematically tailor the defect pairs and the optical properties of the resulting color centers.

View Article and Find Full Text PDF

Sensitivity and speed of detection are contradicting demands that profoundly impact the electrical sensing of molecular biomarkers. Although single-molecule sensitivity can now be achieved with single-nanotube field-effect transistors, these tiny sensors, with a diameter less than 1 nm, may take hours to days to capture the molecular target at trace concentrations. Here, we show that this sensitivity-speed challenge can be addressed using covalently functionalized double-wall CNTs that form many individualized, parallel pathways between two electrodes.

View Article and Find Full Text PDF

Organic color centers in single-walled carbon nanotubes have demonstrated exceptional ability to generate single photons at room temperature in the telecom range. Combining the color centers with pristine air-suspended nanotubes would be desirable for improved performance, but all current synthetic methods occur in solution which makes them incompatible. Here we demonstrate the formation of color centers in air-suspended nanotubes using a vapor-phase reaction.

View Article and Find Full Text PDF

Serum biomarkers are often insufficiently sensitive or specific to facilitate cancer screening or diagnostic testing. In ovarian cancer, the few established serum biomarkers are highly specific, yet insufficiently sensitive to detect early-stage disease and to impact the mortality rates of patients with this cancer. Here we show that a 'disease fingerprint' acquired via machine learning from the spectra of near-infrared fluorescence emissions of an array of carbon nanotubes functionalized with quantum defects detects high-grade serous ovarian carcinoma in serum samples from symptomatic individuals with 87% sensitivity at 98% specificity (compared with 84% sensitivity at 98% specificity for the current best clinical screening test, which uses measurements of cancer antigen 125 and transvaginal ultrasonography).

View Article and Find Full Text PDF