Publications by authors named "Yuhua Cheng"

The kidney is essential for lactate metabolism. Under normal conditions, the renal cortex mainly absorbs and metabolizes lactate, with minimal amounts excreted in urine. This process is part of a glucose-lactate recycling system between the cortex and medulla.

View Article and Find Full Text PDF

As an emerging ionic sensor with low-voltage operation (<1 V), biocompatibility, and stable operation in aqueous environments, organic electrochemical transistors (OECTs) have attracted significant research interest for various biofluid-related ion detection, where minor ion concentration variations can effectively reflect health or pathology states. However, OECT-based ion sensors are currently limited by restricted device transconductance g and stabilites, which severely hinder their applications in actual ion sensing scenarios. Here, ultra-sensitive multi-ion sensors based on high-performance n-type vertical OECTs (accumulation mode, g = 58 mS) for Na, K, and Ca detection in a practical biofluid (effluent from continuous renal replacement therapy), are demonstrated with high accuracy and stability, which are comparable to conventional Roche method.

View Article and Find Full Text PDF

Despite the accuracy and robustness attained in the field of object tracking, algorithms based on Siamese neural networks often over-rely on information from the initial frame, neglecting necessary updates to the template; furthermore, in prolonged tracking situations, such methodologies encounter challenges in efficiently addressing issues such as complete occlusion or instances where the target exits the frame. To tackle these issues, this study enhances the SiamRPN algorithm by integrating the convolutional block attention module (CBAM), which enhances spatial channel attention. Additionally, it integrates the kernelized correlation filters (KCFs) for enhanced feature template representation.

View Article and Find Full Text PDF

This study offers a theoretical solution for the neutral surface position of a space lightweight mirror employing two-axis bipod flexible mounts (TABFM) evenly distributed at three locations along the circumference. To maximize the surface shape accuracy of the mirror (SSAM) under the influence of radial gravity, it is typically necessary that the center of rotation of the TABFM coincides with the position of the neutral surface of the mirror (PNSM). Departing from the PNSM, the SSAM will be substantially deteriorated.

View Article and Find Full Text PDF

Efficient piston estimation is a critical factor in preserving the image quality in synthetic aperture telescopes. When the light source or observation scene is an extended object, the spatial properties of the target and the point spread function (PSF) will undergo convolution effects on the scientific image plane, posing a significant challenge to numerous developed point-source piston sensing methods. In this paper, we investigate a model-driven-based piston sensing strategy capable of high-accuracy piston measurement for extended scenes.

View Article and Find Full Text PDF

Accurate and timely pest and disease monitoring during the cultivation process of traditional Chinese medicinal materials is crucial for ensuring optimal growth, increased yield, and enhanced content of effective components. This paper focuses on the essential requirements for pest and disease monitoring in a planting base of Cinnamomum Camphora var. Borneol (CCB) and presents a solution using unmanned aerial vehicle (UAV) images to address the limitations of real-time and on-site inspections.

View Article and Find Full Text PDF

Organic electrochemical transistor (OECT)-based inverter introduces new prospects for energy-efficient brain-inspired artificial intelligence devices. Here, we report single-component OECT-based inverters by incorporating ambipolar p(gDPP-V). Notably, p(gDPP-V) shows state-of-the-art ambipolar OECT performances in both conventional (p/n-type mode transconductance of 29/25 S cm) and vertical (transconductance of 297.

View Article and Find Full Text PDF

Accurate localization of objects of interest in remote sensing images (RSIs) is of great significance for object identification, resource management, decision-making and disaster relief response. However, many difficulties, like complex backgrounds, dense target quantities, large-scale variations, and small-scale objects, which make the detection accuracy unsatisfactory. To improve the detection accuracy, we propose an Adaptive Adjacent Context Negotiation Network (ACN-Net).

View Article and Find Full Text PDF

Circuits based on organic electrochemical transistors (OECTs) have great potential in the fields of biosensors and artificial neural computation due to their biocompatibility and neural similarity. However, the integration of OECT-based circuits lags far behind other emerging electronics. Here, ternary inverters based on antiambipolar vertical OECTs (vOECTs) and their integration with the establishment of neural networks are demonstrated.

View Article and Find Full Text PDF

Objective:  This study aimed to compare the gender differences in isolated mitral regurgitation (MR) repair.

Methods:  Of 381 adults aged 54.8 ± 12.

View Article and Find Full Text PDF

Advances in deep learning and computer vision have overcome many challenges inherent in the field of autonomous intelligent vehicles. To improve the detection accuracy and efficiency of EdgeBoard intelligent vehicles, we proposed an optimized design of EdgeBoard based on our PP-YOLOE+ model. This model innovatively introduces a composite backbone network, incorporating deep residual networks, feature pyramid networks, and RepResBlock structures to enrich environmental perception capabilities through the advanced analysis of sensor data.

View Article and Find Full Text PDF

Stretchable electronics have attracted tremendous attention amongst academic and industrial communities due to their prospective applications in personal healthcare, human-activity monitoring, artificial skins, wearable displays, human-machine interfaces, etc. Other than mechanical robustness, stable performances under complex strains in these devices that are not for strain sensing are equally important for practical applications. Here, a comprehensive summarization of recent advances in stretchable electronics with strain-resistive performance is presented.

View Article and Find Full Text PDF

The emergence of ionic-junction devices has attracted growing interests due to the potential of serving as signal transmission and translation media between electronic devices and biological systems using ions. Among them, fiber-shaped iontronics possesses a great advantage in implantable applications owing to the unique one-dimensional geometry. However, fabricating stable ionic-junction on curved surfaces remains a challenge.

View Article and Find Full Text PDF

Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range).

View Article and Find Full Text PDF

Recording the trajectory of table tennis balls in real-time enables the analysis of the opponent's attacking characteristics and weaknesses. The current analysis of the ball paths mainly relied on human viewing, which lacked certain theoretical data support. In order to solve the problem of the lack of objective data analysis in the research of table tennis competition, a target detection algorithm-based table tennis trajectory extraction network was proposed to record the trajectory of the table tennis movement in video.

View Article and Find Full Text PDF

Organic electrochemical transistors (OECTs) and OECT-based circuitry offer great potential in bioelectronics, wearable electronics and artificial neuromorphic electronics because of their exceptionally low driving voltages (<1 V), low power consumption (<1 µW), high transconductances (>10 mS) and biocompatibility. However, the successful realization of critical complementary logic OECTs is currently limited by temporal and/or operational instability, slow redox processes and/or switching, incompatibility with high-density monolithic integration and inferior n-type OECT performance. Here we demonstrate p- and n-type vertical OECTs with balanced and ultra-high performance by blending redox-active semiconducting polymers with a redox-inactive photocurable and/or photopatternable polymer to form an ion-permeable semiconducting channel, implemented in a simple, scalable vertical architecture that has a dense, impermeable top contact.

View Article and Find Full Text PDF

Cost-effective fabrication of mechanically flexible low-power electronics is important for emerging applications including wearable electronics, artificial intelligence, and the Internet of Things. Here, solution-processed source-gated transistors (SGTs) with an unprecedented intrinsic gain of ~2,000, low saturation voltage of +0.8 ± 0.

View Article and Find Full Text PDF

In recent years, electrochemical biosensors (ECBSs) have shown significant potential for real-time disease diagnosis and physical condition monitoring. As a multi-constituent oral fluid comprising various disease signaling biomarkers, saliva has drawn much attention in the field of point-of-care (POC) testing. In particular, during the outbreak of the COVID-19 pandemic, ECBSs which hold the simplicity of a single-step assay compared with the multi-step assay of traditional testing methods are expected to relieve the human and economic burden caused by the massive and long-term sample testing process.

View Article and Find Full Text PDF

In this article, a new distributed filtering problem is studied for a class of state-saturated time-varying systems over sensor networks under measurement censoring, where the censored measurements are described by the Tobit measurement model. To curb the data collision and ease communication burden, a random access protocol (RAP) is implemented onto the sensor-to-filter channels to orchestrate the transmission sequence of multiple sensor nodes. The purpose of the addressed problem is to construct a state-saturated distributed filter such that upper bounds (on filtering error covariances) are guaranteed and filter parameters are determined to accommodate both measurement censoring and state saturation under the RAP.

View Article and Find Full Text PDF

Thin-film transistors using metal oxide semiconductors are essential in many unconventional electronic devices. Nevertheless, further advances will be necessary to broaden their technological appeal. Here, a new strategy is reported to achieve high-performance solution-processed metal oxide thin-film transistors (MOTFTs) by introducing a metallic micro-island array (M-MIA) on top of the MO back channel, where the MO is a-IGZO (amorphous indium-gallium-zinc-oxide).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new type of stretchable electronic material by combining an organic semiconductor with a honeycomb structure to create high-performance transistors that can withstand significant mechanical strain.
  • The innovative design allows these devices to maintain stability and functionality, even after 1,500 cycles of stretching and electrical activity.
  • This technology has the potential for various applications, such as health monitoring devices, as it offers reliable performance under deformation while consuming low power.
View Article and Find Full Text PDF

The advent of optogenetics provides a well-targeted tool to manipulate neurons because of its high time resolution and cell-type specificity. Recently, closed-loop neural manipulation techniques consisting of optical stimulation and electrical recording have been widely used. However, metal microelectrodes exposed to light radiation could generate photoelectric noise, thus causing loss or distortion of neural signal in recording channels.

View Article and Find Full Text PDF

With the rapid increase in the use of optogenetics to investigate nervous systems, there is high demand for neural interfaces that can simultaneously perform optical stimulation and electrophysiological recording. However, high-magnitude stimulation artifacts have prevented experiments from being conducted at a desirably high temporal resolution. Here, a flexible polyimide-based neural probe with polyethylene glycol (PEG) packaged optical fiber and Pt-Black/PEDOT-GO (graphene oxide doped poly(3,4-ethylene-dioxythiophene)) modified microelectrodes was developed to reduce the stimulation artifacts that are induced by photoelectrochemical (PEC) and photovoltaic (PV) effects.

View Article and Find Full Text PDF

In this article, the asynchronous fault detection (FD) strategy is investigated in frequency domain for nonlinear Markov jump systems under fading channels. In order to estimate the system dynamics and meet the fact that not all the running modes can be observed exactly, a set of asynchronous FD filters is proposed. By using statistical methods and the Lynapunov stability theory, the augmented system is shown to be stochastic stable with a prescribed l gain even under fading transmissions.

View Article and Find Full Text PDF

Signed digraphs with both positive and negative weighted edges are widely applied to explain cooperative and competitive interactions arising from various social, biological, and physical systems. This article formulates and solves the asynchronous tracking control problem of multiagent systems with input uncertainties on switching signed digraphs. In the interaction setting, we assume that the leader moves at a time-varying acceleration that cannot be measured by the followers accurately, and further suppose that each agent receives its neighbors' states information at certain instants determined by its own clock, which is not necessary to be synchronized with those of other agents.

View Article and Find Full Text PDF