Acquired resistance to hormonal therapy, particularly enzalutamide (ENZ), remains a significant obstacle in the treatment of advanced bone metastatic prostate cancer. Here, it is demonstrated that under ENZ treatment, osteoblasts in the bone microenvironment secrete increased levels of extracellular matrix protein 1 (ECM1), which affects surrounding prostate cancer cells, promoting tumor cell proliferation and anti-androgen resistance. Mechanistically, ECM1 interacts with the enolase 1 (ENO1) receptor on the prostate cancer cell membrane, leading to its phosphorylation at the Y189 site.
View Article and Find Full Text PDFThe second most common male cancer is prostate cancer (PCa), which has a high tendency for bone metastasis. Long non-coding RNAs, including TMPO-AS1, play a crucial role in PCa progression. However, TMPO-AS1's function in PCa bone metastasis (BM) and its underlying molecular mechanisms are unclear.
View Article and Find Full Text PDFBackground: The molecular characteristics of prostate cancer (PCa) cells and the immunosuppressive bone tumor microenvironment (TME) contribute to the limitations of immune checkpoint therapy (ICT). Identifying subgroups of patients with PCa for ICT remains a challenge. Herein, we report that basic helix-loop-helix family member e22 (BHLHE22) is upregulated in bone metastatic PCa and drives an immunosuppressive bone TME.
View Article and Find Full Text PDFBackground: Bone metastasis is the leading cause of tumor-related death in prostate cancer (PCa) patients. Long noncoding RNAs (lncRNAs) have been well documented to be involved in the progression of multiple cancers. Nevertheless, the role of lncRNAs in PCa bone metastasis remains largely unclear.
View Article and Find Full Text PDFBackground: Dynamic somatosensory evoked potentials (DSSEP) can be used to disclose abnormalities of ascending sensory pathways at dynamic positions and diagnose cervical spondylotic myelopathy (CSM). However, radiographic tests including magnetic resonance imaging (MRI) and dynamic X-ray are used much more widely in the management of CSM. Our study aims to clarify the correlations between several radiographic parameters and the DSSEP results, and further determine their reliability with clinical data.
View Article and Find Full Text PDFRadioresistance becomes the major obstacle to reduce tumor recurrence and improve prognosis in the treatment of esophageal squamous cell carcinoma (ESCC). Thus new strategies for radioresistant ESCC are urgently needed. Herein, we reported that tribbles pseudokinase 3 (TRIB3) serves as a key regulator of radioresistance in ESCC.
View Article and Find Full Text PDFBone metastasis is associated with cancer-related death in patients with prostate cancer (PCa). Long noncoding RNAs (lncRNAs) play critical roles in tumor progression of PCa. Nevertheless, the biological function of lncRNAs in PCa bone metastasis remains unclear.
View Article and Find Full Text PDF: The reciprocal repressive loop between ZEB1 and miRNAs has been extensively reported to play an important role in tumor progression and metastasis of various human tumor types. The aim of this study was to elucidate the role and the underlying mechanism of the double-negative feedback loop between ZEB1and miR-33a-5p in bone metastasis of prostate cancer (PCa). : miR-33a-5p expression was examined in 40 bone metastatic and 165 non-bone metastatic PCa tissues by real-time PCR.
View Article and Find Full Text PDFBackground: Clinically, prostate cancer (PCa) exhibits a high avidity to metastasize to bone. Myc-associated zinc-finger protein (MAZ) is a well-documented oncogene involved in the progression and metastasis of multiple cancer types, even in PCa. However, the clinical significance and biological roles of MAZ in bone metastasis of PCa remain unclear.
View Article and Find Full Text PDFThe primary challenge facing treatment of epithelial ovarian cancer (EOC) is the high frequency of chemoresistance, which severely impairs the quality of life and survival of patients with EOC. Our study aims to investigate the mechanisms by which upregulation of NR2F6 induces chemoresistance in EOC. The biological roles of NR2F6 in EOC chemoresistance were explored in vitro by Sphere, MTT and AnnexinV/PI assay, and in vivo using an ovarian cancer orthotopic transplantation model.
View Article and Find Full Text PDFIn a substantial fraction of prostate cancer (PCa) patients, bone metastasis appears after years or even decades of latency. Canonical Wnt/β-catenin signaling has been proposed to be implicated in dormancy of cancer cells. However, how these tumor cells are kept dormant and recur under control of Wnt/β-catenin signaling derived from bone microenvironment remains unknown.
View Article and Find Full Text PDFHigh avidity of bone metastasis is an important characteristic in prostate cancer (PCa). Downexpression of miR-133b has been reported to be implicated in the development, progression and recurrence in PCa. However, clinical significance and biological roles of miR-133b in bone metastasis of PCa remain unclear.
View Article and Find Full Text PDFUnlabelled: Backgroud:Constitutive activation of TGF-β signalling is a well-recognised mechanism in bone metastasis of prostate cancer (PCa). Protein Interacting with PRKCA 1 (PICK1) is a critical negative regulator of the TGF-β pathway. However, the clinical significance and biological role of PICK1 in PCa bone metastasis remain obscure.
View Article and Find Full Text PDFBackground: The primary issue arising from prostate cancer (PCa) is its high prevalence to metastasize to bone, which severely affects the quality of life and survival time of PCa patients. miR-210-3p is a well-documented oncogenic miRNA implicated in various aspects of cancer development, progression and metastasis. However, the clinical significance and biological roles of miR-210-3p in PCa bone metastasis remain obscure.
View Article and Find Full Text PDFTo explore whether the over-expression of Sry-related HMG box (Sox9) in degenerative chondrocytes is able to improve cell regeneration and protects cells from inflammation induced apoptosis, we generated a Sox9 over-expressing vector delivery system in which the Sox9 gene was inserted into a lentiviral vector. After infecting mouse chondrocytes with the Sox9-encoding vector, we observed a high level of gene transduction efficiency and achieved a high level of Sox9 expression in the infected chondrocytes. To explore whether over-expression of Sox9 is able to induce cell regeneration and improve cell survival, we induced Sox9 over-expression by lentiviral vector infection 48 hours before IL-1β treatment.
View Article and Find Full Text PDFThe ability of mesenchymal stem cells (MSCs) to differentiate into osteogenic lineages requires management for their future use in treating bone destruction and osteoporosis. Hepcidin is closely associated with bone metabolism, however, it remains to be elucidated whether hepcidin affects osteogenic differentiation in MSCs. The present study demonstrated that hepcidin enhanced osteoblastic differentiation and mineralization, which was manifested by an upregulation in the differentiation markers alkaline phosphatase and osteogenic genes.
View Article and Find Full Text PDFPro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of osteoarthritis (OA).Interferon regulatory factor 1 (IRF-1) is an important transcriptional factor accounting for inflammation response induced by TNF-α. The physiological function of IRF-1 in OA is still unknown.
View Article and Find Full Text PDFOsteoarthritis (OA) is a chronic degenerative joint disorder in which genetic, hormonal, mechanical and ageing factors affect its progression. Current studies are focusing on chondrocytes as a key mediator of OA at a cellular level. however, the mechanism underlying chondrocyte apoptosis remains unclear.
View Article and Find Full Text PDFThe development of safe and efficient gene carriers is the key to the clinical success of gene therapy. The present study was designed to develop and evaluate the chitosan-graft-polyethylenimine (CP)/DNA nanoparticles as novel non-viral gene vectors for gene therapy of osteoarthritis. The CP/DNA nanoparticles were produced through a complex coacervation of the cationic polymers with pEGFP after grafting chitosan (CS) with a low molecular weight (Mw) PEI (Mw = 1.
View Article and Find Full Text PDFCartilage defects resulting from traumatic injury or degenerative diseases have very limited spontaneous healing ability. Recent progress in tissue engineering and local therapeutic gene delivery systems has led to promising new strategies for successful regeneration of hyaline cartilage. In the present study, tissue engineering and local therapeutic gene delivery systems are combined with the design of a novel gene-activated matrix (GAM) embedded with hybrid hyaluronic acid(HA)/chitosan(CS)/plasmid-DNA nanoparticles encoding transforming growth factor (TGF)-β1.
View Article and Find Full Text PDF