Angew Chem Int Ed Engl
December 2024
Organic photovoltaic materials typically exhibit low charge separation and transfer efficiency and severe exciton/carrier recombination due to high exciton binding energy and short exciton diffusion lengths, limiting the enhancement of photocatalytic hydrogen evolution performance. Here, we introduce a surface charge reversal strategy to regulate charge characters of organic photovoltaic catalyst (OPC). Compared to OPC nanoparticles (NPs) stabilized by anionic surfactant ((-) NPs), NPs stabilized by cationic surfactant ((+) NPs) exhibit a raised Fermi level, larger surface band bending and Schottky barrier, thereby enhancing charge separation and transfer efficiency while suppressing charge carrier recombination.
View Article and Find Full Text PDFThe basic helix-loop-helix (bHLH) domain via critical amino acid residues on basic region binding to E-box (5'-CANNTG-3') is known in embryophyte. However, the dictated E-box types selection by bHLH dimers and the significant impact of these critical amino acid residues along embryophyte evolution remain unclear. The Arabidopsis thaliana PIF3-bHLH (AtPIF3-bHLH) recombinant protein and a series of AtPIF3-bHLH mutants were synthesized and analyzed.
View Article and Find Full Text PDFOxazinomycin is a C-nucleoside natural product characterized by a 1,3-oxazine ring linked to ribose via a C-C glycosidic bond. Construction of the 1,3-oxazine ring depends on the activity of OzmD, which is a mononuclear non-heme iron-dependent enzyme from a family of enzymes that contain a domain of unknown function (DUF) 4243. OzmD catalyzes an unusual oxidative ring rearrangement of a pyridine derivative that releases cyanide as a by-product in the final stage of oxazinomycin biosynthesis.
View Article and Find Full Text PDFThe decay of the T state to the ground state is an essential property of photosensitizers because it decides the lifetime of excited states and, thus, the time window for sensitization. The sulfur/selenium substitution of carbonyl groups can red-shift absorption spectra and enhance the triplet yield because of the large spin-orbit coupling, modifying nucleobases to potential photosensitizers for various applications. However, replacing sulfur with selenium will also cause a much shorter T lifetime.
View Article and Find Full Text PDFBackground: The prognosis of high or markedly low diastolic blood pressure (DBP) with normalized on-treatment systolic blood pressure on major adverse cardiovascular events (MACEs) is uncertain. This study examined whether treated isolated diastolic hypertension (IDH) and treated isolated low DBP (ILDBP) were associated with MACEs in patients with hypertension.
Methods And Results: A total of 7582 patients with on-treatment systolic blood pressure <130 mm Hg from SPRINT (Systolic Blood Pressure Intervention Trial) were categorized on the basis of average DBP: <60 mm Hg (n=1031; treated ILDBP), 60 to 79 mm Hg (n=5432), ≥80 mm Hg (n=1119; treated IDH).
Background: This study aimed to investigate whether physical activity (PA) is associated with a lower risk of subsequently developing chronic obstructive pulmonary disease (COPD).
Methods: We conducted this population-based longitudinal follow-up study in a community in Taiwan. This study recruited 61,446 subjects who had participated in the Keelung Community-based Integrated Screening Program (KCIS) between 2005 and 2012.
Background: Zinc oxide nanoparticles (ZnONPs) are common materials used in skin-related cosmetics and sunscreen products due to their whitening and strong UV light absorption properties. Although the protective effects of ZnONPs against UV light in intact skin have been well demonstrated, the effects of using ZnONPs on damaged or sunburned skin are still unclear. In this study, we aimed to reveal the detailed underlying mechanisms related to keratinocytes and macrophages exposed to UVB and ZnONPs.
View Article and Find Full Text PDFMetal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment.
View Article and Find Full Text PDFSupported platinum nanoparticle catalysts are known to convert polyolefins to high-quality liquid hydrocarbons using hydrogen under relatively mild conditions. To date, few studies using platinum grafted onto various metal oxide (MO) supports have been undertaken to understand the role of the acidity of the oxide support in the carbon-carbon bond cleavage of polyethylene under consistent catalytic conditions. Specifically, two Pt/MO catalysts (MO = SrTiO and SiO-AlO; Al = 3.
View Article and Find Full Text PDFPlastic waste accumulation and its degradation into microplastics (MPs) and nanoplastics (NPs) pose environmental concerns. Previous studies have indicated that polystyrene (PS)-MPs harm living animals. Extracellular vesicles (EVs) are associated with metabolic reprogramming and mitochondrial dysfunction in various kidney diseases.
View Article and Find Full Text PDFValanimycin is an azoxy-containing natural product isolated from the fermentation broth of Streptomyces viridifaciens MG456-hF10. While the biosynthesis of valanimycin has been partially characterized, how the azoxy group is constructed remains obscure. Herein, the membrane protein VlmO and the putative hydrazine synthetase ForJ from the formycin biosynthetic pathway are demonstrated to catalyze N-N bond formation converting O-(l-seryl)-isobutyl hydroxylamine into N-(isobutylamino)-l-serine.
View Article and Find Full Text PDFDepolymerization and upcycling are promising approaches to managing plastic waste. However, quantitative measurements of reaction rates and analyses of complex product mixtures arising from depolymerization of polyolefins constitute significant challenges in this emerging field. Here, we detail techniques for recovery and analysis of products arising from batch depolymerization of polyethylene.
View Article and Find Full Text PDFViruses and virus-like particles are powerful templates for materials synthesis because of their capacity for precise protein engineering and diverse surface functionalization. We recently developed a recombinant bacterial expression system for the production of barley stripe mosaic virus-like particles (BSMV VLPs). However, the applicability of this biotemplate was limited by low stability in alkaline conditions and a lack of chemical handles for ligand attachment.
View Article and Find Full Text PDFNeuroblastoma, a childhood cancer affecting the sympathetic nervous system, continues to challenge the development of potent treatments due to the limited availability of druggable targets for this aggressive illness. Recent investigations have uncovered that phosphoglycerate dehydrogenase (PHGDH), an essential enzyme for de novo serine synthesis, serves as a non-oncogene dependency in high-risk neuroblastoma. In this study, we show that homoharringtonine (HHT) acts as a PHGDH inhibitor, inducing intricate alterations in cellular metabolism, and thus providing an efficient treatment for neuroblastoma.
View Article and Find Full Text PDFRenal inflammation and fibrosis are significantly correlated with the deterioration of kidney function and result in chronic kidney disease (CKD). However, current therapies only delay disease progression and have limited treatment effects. Hence, the development of innovative therapeutic approaches to mitigate the progression of CKD has become an attractive issue.
View Article and Find Full Text PDFMagnetic resonance-guided focused ultrasound (MRgFUS) is a new surgical treatment for Parkinson's disease (PD). Previous experience with radiofrequency lesionectomy and deep brain stimulation (DBS) has identified several candidate targets for MRgFUS intended to alleviate the motor symptoms of PD. The main advantage of MRgFUS is that it is incisionless.
View Article and Find Full Text PDFCovering: from 2000 up to the very early part of 2023-Adenosyl-L-methionine (SAM) is a naturally occurring trialkyl sulfonium molecule that is typically associated with biological methyltransfer reactions. However, SAM is also known to donate methylene, aminocarboxypropyl, adenosyl and amino moieties during natural product biosynthetic reactions. The reaction scope is further expanded as SAM itself can be modified prior to the group transfer such that a SAM-derived carboxymethyl or aminopropyl moiety can also be transferred.
View Article and Find Full Text PDFOxsB is a B-dependent radical SAM enzyme that catalyzes the oxidative ring contraction of 2'-deoxyadenosine 5'-phosphate to the dehydrogenated, oxetane containing precursor of oxetanocin A phosphate. AlsB is a homologue of OxsB that participates in a similar reaction during the biosynthesis of albucidin. Herein, OxsB and AlsB are shown to also catalyze radical mediated, stereoselective C2'-methylation of 2'-deoxyadenosine monophosphate.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2023
Efficient in situ deposition of metallic cocatalyst, like zero-valent platinum (Pt), on organic photovoltaic catalysts (OPCs) is the prerequisite for their high catalytic activities. Here we develop the OPC (Y6CO), by introducing carbonyl in the core, which is available to σ-π coordinate with transition metals, due to the high-energy empty π* orbital of carbonyl. Y6CO exhibits a stronger capability to anchor Pt species and reduce them to metallic state, resulting in more Pt deposition, relative to the control OPC without the central σ-π anchor.
View Article and Find Full Text PDF