Publications by authors named "Yuhsin Kuo"

Article Synopsis
  • Researchers are tackling the challenge of improving photon absorption in ultra-thin materials to enhance the performance of monolayer photodetectors, specifically using MoS (molybdenum disulfide) integrated with a nitride-based metasurface.
  • The study reports record-breaking performance with a detectivity of 2.58 × 10 Jones, an exceptionally low dark current of 8 pA, and impressive stability over 40 days, attributing these results to the strong electromagnetic field created by the metasurface.
  • The findings highlight the scalability and compatibility of these 2D semiconductor devices with existing silicon-based technology, paving the way for advancements in imaging, sensing, and optical communication fields.
View Article and Find Full Text PDF

Inhibition of glucosylceramide synthase (GCS) has been proposed as a therapeutic strategy for the treatment of Parkinson's Disease (PD), particularly in patients where glycosphingolipid accumulation and lysosomal impairment are thought to be contributing to disease progression. Herein, we report the late-stage optimization of an orally bioavailable and CNS penetrant isoindolinone class of GCS inhibitors. Starting from advanced lead , we describe efforts to identify an improved compound with a lower human dose projection, minimal P-glycoprotein (P-gp) efflux, and acceptable pregnane X receptor (PXR) profile through fluorine substitution.

View Article and Find Full Text PDF

Letermovir is approved for use in cytomegalovirus-seropositive hematopoietic stem cell transplant recipients and is investigated in other transplant settings. Nonlinear pharmacokinetics (PKs) were observed in clinical studies after intravenous and oral dosing across a wide dose range, including the efficacious doses of 240 and 480 mg. A physiologically-based PK (PBPK) model for letermovir was built to develop a plausible explanation for the nonlinear PKs observed in clinical studies.

View Article and Find Full Text PDF

Parkinson's disease is the second most prevalent progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations in GBA, the gene that encodes for the lysosomal enzyme glucosylcerebrosidase, are a major genetic risk factor for the development of Parkinson's disease potentially through the accumulation of glucosylceramide and glucosylsphingosine in the CNS. A therapeutic strategy to reduce glycosphingolipid accumulation in the CNS would entail inhibition of the enzyme responsible for their synthesis, glucosylceramide synthase (GCS).

View Article and Find Full Text PDF

Cognitive deficits, which are core manifestations in schizophrenia and exhibit a limited response to antipsychotic treatment, contribute to poor treatment outcomes and functional disability. Evidence on the effect of aerobic walking (AW) and exercise intensity on cognitive function in patients with schizophrenia is lacking. In total, 79 patients with schizophrenia were recruited for a 12-week randomized control trial and allocated to the treatment-as-usual (TAU, n = 38) and treatment-as-usual plus AW (TAW, n = 39) groups.

View Article and Find Full Text PDF

Doravirine, a novel nonnucleoside reverse transcriptase inhibitor for the treatment of human immunodeficiency virus 1 (HIV-1), is predominantly cleared by cytochrome P450 (CYP) 3A4 and metabolized to an oxidative metabolite (M9). Coadministration with rifabutin, a moderate CYP3A4 inducer, decreased doravirine exposure. Based on nonparametric superposition modeling, a doravirine dose adjustment from 100 mg once daily to 100 mg twice daily during rifabutin coadministration was proposed.

View Article and Find Full Text PDF

Cognitive impairment is one of the core features of schizophrenia. This study examined the influences of an aerobic dance programme on the cognitive functions of people with schizophrenia. A quasi-experimental matched-control design was applied.

View Article and Find Full Text PDF

Background And Objectives: Prediction of metabolic clearance has been a challenge for compounds exhibiting minimal turnover in typical in vitro stability experiments. The aim of the current study is to evaluate the utilization of plated human hepatocytes to predict intrinsic clearance of low-turnover compounds.

Methods: The disappearance of test compounds was determined for up to 48 h while enzyme activities in plated hepatocytes were monitored concurrently in a complimentary experiment.

View Article and Find Full Text PDF

Investigation of a novel amino-aza-benzimidazolone structural class of positive allosteric modulators (PAMs) of metabotropic glutamate receptor 2 (mGluR2) identified [2.2.2]-bicyclic amine 12 as an intriguing lead structure due to its promising physicochemical properties and lipophilic ligand efficiency (LLE).

View Article and Find Full Text PDF

Optimization of a benzimidazolone template for potency and physical properties revealed 5-aryl-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-ones as a key template on which to develop a new series of mGlu2 positive allosteric modulators (PAMs). Systematic investigation of aryl-SAR led to the identification of compound 27 as a potent and highly selective mGlu2 PAM with sufficient pharmacokinetics to advance to preclinical models of psychosis. Gratifyingly, compound 27 showed full efficacy in the PCP- and MK-801-induced hyperlocomotion assay in rats at CSF concentrations consistent with mGlu2 PAM potency.

View Article and Find Full Text PDF

The inhibitory effect of boceprevir (BOC), an inhibitor of hepatitis C virus nonstructural protein 3 protease was evaluated in vitro against a panel of drug-metabolizing enzymes and transporters. BOC, a known substrate for cytochrome P450 (P450) CYP3A and aldo-ketoreductases, was a reversible time-dependent inhibitor (k(inact) = 0.12 minute(-1), K(I) = 6.

View Article and Find Full Text PDF

A novel series of amide T-type calcium channel antagonists were prepared and evaluated using in vitro and in vivo assays. Optimization of the screening hit 3 led to identification of the potent and selective T-type antagonist 37 that displayed in vivo efficacy in rodent models of epilepsy and sleep.

View Article and Find Full Text PDF

A novel phenyl acetamide series of short-acting T-type calcium channel antagonists has been identified and evaluated using in vitro and in vivo assays. Heterocycle substitutions of the 4-position of the phenyl acetamides afforded potent and selective antagonists that exhibited desired short plasma half-lives across preclinical species. Lead compound TTA-A8 emerged as a compound with excellent in vivo efficacy as indicated by its significant modulation of rat sleep architecture in an EEG telemetry model, favorable pharmacokinetic properties, and excellent preclinical safety.

View Article and Find Full Text PDF

Novel oxazolobenzimidazoles are described as potent and selective positive allosteric modulators of the metabotropic glutamate receptor 2. The discovery of this class and optimization of its physical and pharmacokinetic properties led to the identification of potent and orally bioavailable compounds (20 and 21) as advanced leads. Compound 20 (TBPCOB) was shown to have robust activity in a PCP-induced hyperlocomotion model in rat, an assay responsive to clinical antipsychotic treatments for schizophrenia.

View Article and Find Full Text PDF

The discovery and synthesis of 4,4-disubstituted quinazolinones as T-type calcium channel antagonists is reported. Based on lead compounds 2 and 3, a focused SAR campaign driven by the optimization of potency, metabolic stability, and pharmacokinetic profile identified 45 as a potent T-type Ca(2+) channel antagonist with minimized PXR activation. In vivo, 45 suppressed seizure frequency in a rat model of absence epilepsy and showed significant alterations of sleep architecture after oral dosing to rats as measured by EEG.

View Article and Find Full Text PDF

A novel series of quinazolinone T-type calcium channel antagonists have been prepared and evaluated using in vitro and in vivo assays. Optimization of the screening hit 3 by modifications of the 3- and 4-positions of the quinazolinone ring afforded potent and selective antagonists that displayed in vivo central nervous system efficacy in epilepsy and tremor models, as well as significant effects on rat active wake as measured by electrocorticogram.

View Article and Find Full Text PDF

Hit to lead optimization of (5R)-5-hexyl-3-phenyl-1,3-oxazolidin-2-one as a positive allosteric modulator of mGluR2 is described. Improvements in potency and metabolic stability were achieved through SAR on both ends of the oxazolidinone. An optimized lead compound was found to be brain penetrant and active in a rat ketamine-induced hyperlocomotion model for antipsychotic activity.

View Article and Find Full Text PDF

Brain penetration of drugs which are subject to P-glycoprotein (Pgp)-mediated efflux is attenuated, as manifested by the fact that the cerebrospinal fluid concentration (C(CSF)), a good surrogate of the unbound brain concentration (C(ub)), is lower than the unbound plasma concentration (C(up)) for Pgp substrates. In rodents, the attenuation magnitude of brain penetration by Pgp-mediated efflux has been estimated by correlating the ratio of CSF to plasma exposures (C(CSF)/C(p)) with the unbound fraction in plasma (f(u)) upon the incorporation of the in vivo or in vitro Pgp-mediated efflux ratios (ERs). In the present work, we investigated the impact of Pgp-mediated efflux on C(CSF) in monkeys.

View Article and Find Full Text PDF

The discovery of a novel series of potent and selective T-type calcium channel antagonists is reported. Initial optimization of high-throughput screening leads afforded a 1,4-substituted piperidine amide 6 with good potency and limited selectivity over hERG and L-type channels and other off-target activities. Further SAR on reducing the basicity of the piperidine and introducing polarity led to the discovery of 3-axial fluoropiperidine 30 with a significantly improved selectivity profile.

View Article and Find Full Text PDF

The novel T-type antagonist ( S)- 5 has been prepared and evaluated in in vitro and in vivo assays for T-type calcium ion channel activity. Structural modification of the piperidine leads 1 and 2 afforded the fluorinated piperidine ( S)- 5, a potent and selective antagonist that displayed in vivo CNS efficacy without adverse cardiovascular effects.

View Article and Find Full Text PDF

After oral treatment (once daily) for 4 weeks with the potent bradykinin B(1) receptor antagonist methyl 3-chloro-3'-fluoro-4'-{(1R)-1-[({1-[(trifluoroacetyl)amino]cyclopropyl}carbonyl)-amino]ethyl}-1,1'-biphenyl-2-carboxylate (MK-0686), rhesus monkeys (Macaca mulatta) exhibited significantly reduced systemic exposure of the compound in a dose-dependent manner, suggesting an occurrence of autoinduction of MK-0686 metabolism. This possibility is supported by two observations. 1) MK-0686 was primarily eliminated via biotransformation in rhesus monkeys, with oxidation on the chlorophenyl ring as one of the major metabolic pathways.

View Article and Find Full Text PDF

The catalytic efficiency, regioselectivity, and response to chemical inhibitors of diclofenac (DF) hydroxylation in three Old World monkey liver microsomes (rhesus, cynomolgus, and African green monkey) are different from those determined with human liver microsomes. In contrast to the high affinity-high capacity (low Km-high Vmax) characteristics of DF 4'-hydroxylation in humans, this reaction proceeded in all monkey species with catalytic efficiencies >20-fold lower. However, DF 5-hydroxylation, a negligible reaction in human liver microsomes, was kinetically favored in monkeys mainly due to the increased Vmax values.

View Article and Find Full Text PDF

Effects of rifampin on in vitro oxidative metabolism and in vivo pharmacokinetics of diclofenac (DF), a prototypic CYP2C9 marker substrate, were investigated in rhesus monkeys. In monkey hepatocytes, rifampin markedly induced DF 4'-hydroxylase activity, with values for EC(50) of 0.2 to 0.

View Article and Find Full Text PDF

In this study, induction and inhibition of rhesus monkey CYP3A64 versus human CYP3A4 were characterized in vitro, and the corresponding pharmacokinetic consequences were evaluated in rhesus monkeys. In monkey hepatocytes, rifampin markedly induced CYP3A64 mRNA (EC50 = 0.5 microM; Emax = 6-fold) and midazolam (MDZ) 1'-hydroxylase activity (EC50 = 0.

View Article and Find Full Text PDF

Purpose: Phenethyl isothiocyanate (PEITC) is a dietary component present in cruciferous vegetables and reported to have chemopreventive properties. Previous reports of PEITC pharmacokinetics have measured total ITC (PEITC and its metabolites) in plasma. Our objective was to examine the dose-dependent pharmacokinetics and oral bioavailability of unchanged PEITC, as well as its pH- and temperature-dependent stability and its serum protein binding.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session85p7bhnp249odac3vr4tjlc01k8abehi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once