Publications by authors named "Yuhei Yamazaki"

The neutron beam in boron neutron capture therapy (BNCT) exhibits poor directionality and significantly decreasing neutron flux with increasing distance. Therefore, the treatment site must be close to the irradiation aperture. Some patients with head and neck cancer may benefit from a sitting-position setup.

View Article and Find Full Text PDF

Background: Accelerator-based boron neutron capture therapy (AB-BNCT) systems are becoming commercially available and are expected to be widely used in hospitals. To ensure the safety of BNCT, establishing a quality assurance (QA) program and properly managing the stability of the system are necessary. In particular, a high level of beam output stability is required to avoid accidents because beam output is a major factor in patient dose.

View Article and Find Full Text PDF

This study aims to evaluate the feasibility of using a commercially available boron neutron capture therapy (BNCT) dose calculation program (NeuCure Dose Engine) in terms of calculation accuracy and computation time. Treatment planning was simulated under the following calculation parameters: 1.5-5.

View Article and Find Full Text PDF

Background: Administration of external radiation therapy via proton therapy systems carries a risk of occasional collisions between the patient's body and gantry, which is increased by the snout placed near the patient for better dose distribution. Although treatment planning software (TPS) can simulate controlled collisions, the computed tomography (CT) data used for treatment planning are insufficient given that collisions can occur outside the CT imaging region. Thus, imaging the three-dimensional (3D) surface outside the CT range and combining the data with those obtained by CT are essential for avoiding collisions.

View Article and Find Full Text PDF

NeuCure® is the only accelerator-based boron neutron capture therapy (BNCT) system in the world with pharmaceutical approval. Until now, only flat collimators (FCs) on the patient side have been installed. However, in some cases of head and neck cancer patients, positioning the patient close enough to the collimator when using FCs was difficult.

View Article and Find Full Text PDF

We aimed to evaluate dosimetric effects of ipsilateral shoulder position variations (ISPVs) in sitting-positioned boron neutron capture therapy (BNCT) for lower neck tumor. The ISPVs were simulated using deformed shoulder images that can simulate arbitrary shape. The dose-volume parameters for the tumor in the rotated shoulder plans considerably varied compared with that for the mucosa.

View Article and Find Full Text PDF

The irradiation field of boron neutron capture therapy (BNCT) consists of multiple dose components including thermal, epithermal and fast neutron, and gamma. The objective of this work was to establish a methodology of dosimetric quality assurance (QA), using the most standard and reliable measurement methods, and to determine tolerance level for each QA measurement for a commercially available accelerator-based BNCT system. In order to establish a system of dosimetric QA suitable for BNCT, the following steps were taken.

View Article and Find Full Text PDF

The dosimetric effect of set-up error in boron neutron capture therapy (BNCT) for head and neck cancer remains unclear. In this study, we analyzed the tendency of dose error by treatment location when simulating the set-up error of patients. We also determined the tolerance level of the set-up error in BNCT for head and neck cancer.

View Article and Find Full Text PDF

Purpose: Anatomical changes, such as shrinkage and aeration, can affect dose distribution in proton therapy (PT) for maxillary sinus carcinoma (MSC). These changes can affect the dose to the target and organs at risk (OARs); however, when these changes occur during PT is unclear. This study aimed to investigate the dosimetric impact of anatomical changes during PT.

View Article and Find Full Text PDF

Purpose: To investigate the impact of different setup methods, vertebral body matching (VM), diaphragm matching (DM), and marker matching (MM), on the dose distribution in proton therapy (PT) for hepatocellular carcinoma (HCC).

Materials And Methods: Thirty-eight HCC lesions were studied retrospectively to assess changes in the dose distribution on two computed tomography (CT) scans. One was for treatment planning (1st-CT), and the other was for dose confirmation acquired during the course of PT (2nd-CT).

View Article and Find Full Text PDF

In this study, we aim to evaluate the comprehensive geometric accuracy of proton rotating gantries by performing an end-to-end test using a cone-shaped scintillator screen detector, known as XRV-124. The XRV-124 comprises a cone-shaped sheet-like scintillator and charge-coupled device camera that detects the scintillation light. First, the results of the Winston-Lutz and end-to-end XRV-124 tests performed on a conventional linear accelerator were compared to confirm the reliability of the XRV-124, and the snout position dependency of the geometric accuracy was evaluated for the proton rotating gantry as a pre-verification process.

View Article and Find Full Text PDF

The purpose of this study was to introduce the modified Winston-Lutz (mWL) test and to evaluate its feasibility. This is a new method to completely absorb the proton beam around the isocenter inside a phantom for radiation control. The mWL test was performed using a 14-cm-diameter acrylic Lucy 3D QA Phantom for a passive-scattering proton beam gantry.

View Article and Find Full Text PDF

The use of a multi-layer ionization chamber, Zebra, in patient-specific quality assurance (QA) for proton depth dose distributions in a single-ring wobbling method is investigated. The depth dose distributions measured using Zebra are compared with those calculated using the treatment planning system (TPS), XiO-M, and measured using an ionization chamber with a motorized water phantom system. Because the TPS only provides point doses, the average doses are calculated using in-house software.

View Article and Find Full Text PDF

Nicotine, an addictive substance, is absorbed from the lungs following inhalation of tobacco smoke, and distributed to various tissues such as liver, brain, and retina. Recent in vivo and in vitro studies suggest the involvement of a carrier-mediated transport process in nicotine transport in the lung, liver, and inner blood-retinal barrier. In addition, in vivo studies of influx and efflux transport of nicotine across the blood-brain barrier (BBB) revealed that blood-to-brain influx transport of nicotine is more dominant than brain-to-blood efflux transport of nicotine.

View Article and Find Full Text PDF

Background: para-Tyramine (p-TA) is a biogenic amine which is involved in multiple neuronal signal transductions. Since the concentration of p-TA in dog cerebrospinal fluid (CSF) has been reported to be greater than that in plasma, it is proposed that clearance of cerebral p-TA is important for normal function. The purpose of this study was to examine the role of the blood-brain barrier and blood-cerebrospinal fluid barrier (BCSFB) in p-TA clearance from the brain.

View Article and Find Full Text PDF