Single-cell analysis has become increasingly important in uncovering cell heterogeneity, which has great implications in medicine and biology for a deep understanding of cell characteristics. Owing to its significance, it is vital to create novel devices that can reveal special or unique cells. In this work, we developed a single-cell secretion detection chip consisting of microwells that can trap single cells.
View Article and Find Full Text PDFA Au-capped nanopillar chip was prepared using nanoimprint lithography (NIL) and Au sputtering onto a cyclo-olefin polymer film. The Au surface of the chip exerting localized surface plasmon resonance (LSPR) phenomena was immobilized with a glycopolymer for the detection of cytokines. The glycopolymers were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization for controlled polymer chain length, and thiol-terminated glycopolymers with chain lengths of 20-, 100-, and 200-mers were designed.
View Article and Find Full Text PDFEffective screening methods for the development of glycopolymers as molecular recognition materials are desirable for the discovery of novel biofunctional materials. A glycopolymer library was prepared to obtain guidelines for the design of glycopolymers for the recognition of cholera toxin B subunits (CTB). Glycopolymers with varying ratios of hydrophobic and sugar units were synthesized by reversible addition fragmentation chain transfer polymerization.
View Article and Find Full Text PDFGlycopolymers mimicking GM1 gangliosides were synthesized by incorporating multiple types of carbohydrates into the polymer backbone. The glycopolymers were immobilized onto gold surfaces, and the interactions with the cholera toxin B subunit (CTB) were analyzed using surface plasmon resonance imaging. The glycopolymer containing both galactose and neuraminic acid showed enhanced recognition of CTB.
View Article and Find Full Text PDFA two-dimensional, glycopolymer-immobilized, photonic crystal (PhC) biosensor was developed for the detection of proteins. Glycopolymers with different conformations, homopolymers and sugar-incorporating nanoparticles were immobilized on the PhC using intermediate succinimide-containing polymers and proteins. The surface modification was analyzed in detail, and the sugar-protein interaction was detected by monitoring changes in the reflection intensity that was expressed by the two-dimensional PhC.
View Article and Find Full Text PDF