Publications by authors named "Yuhei Ogomi"

The intermediate-band solar cell (IBSC) with quantum dots and a bulk semiconductor matrix has potential for high power conversion efficiency, exceeding the Shockley-Queisser limit. However, the IBSCs reported to date have been fabricated only by dry process and their efficiencies are limited, because their photo-absorption layers have low particle density of quantum dots, defects due to lattice strain, and low bandgap energy of bulk semiconductors. Here we present solution-processed IBSCs containing photo-absorption layers where lead sulfide quantum dots are densely dispersed in methylammonium lead bromide perovskite matrices with a high bandgap energy of 2.

View Article and Find Full Text PDF

Frequently observed high V loss in tin-lead mixed perovskite solar cells is considered to be one of the serious bottle-necks in spite of the high attainable Jsc due to wide wavelength photon harvesting. An amicable solution to minimize the V loss up to 0.50 V has been demonstrated by introducing an n-type interface with spike structure between the absorber and electron transport layer inspired by highly efficient Cu(In,Ga)Se solar cells.

View Article and Find Full Text PDF

Lead-based perovskite solar cells have gained ground in recent years, showing efficiency as high as 20%, which is on par with that of silicon solar cells. However, the toxicity of lead makes it a nonideal candidate for use in solar cells. Alternatively, tin-based perovskites have been proposed because of their nontoxic nature and abundance.

View Article and Find Full Text PDF

Photoexcited electron injection dynamics from CsPbI quantum dots (QDs) to wide gap metal oxides are studied by transient absorption spectroscopy. Experimental results show under a low excitation intensity that ∼99% of the photoexcited electrons in CsPbI QDs can be injected into TiO with a size-dependent rate ranging from 1.30 × 10 to 2.

View Article and Find Full Text PDF

Using spatial energy-level gradient engineering with quantum dots (QDs) of different sizes to increase the generated carrier collection at the junction of a QD heterojunction solar cell (QDHSC) is a hopeful route for improving the energy-conversion efficiency. However, the results of current related research have shown that a variable band-gap structure in a QDHSC will create an appreciable increase, not in the illumination current density, but rather in the fill factor. In addition, there are a lack of studies on the mechanism of the effect of these graded structures on the photovoltaic performance of QDHSCs.

View Article and Find Full Text PDF

A novel organic small molecule bis-triphenylamine with spiro(fluorene-9,9'-xanthene) as the conjugated system, named BTPA-4, is successfully synthesized and employed as the hole-selective layer (HSL) in colloidal quantum dots solar cells (CQDSCs). The introduction of BTPA-4 layer can significantly prolong effective carrier lifetime (τ), increase charge recombination resistance (R), and thus diminish the interfacial charge recombination at the PbS-QDs/Au electrode interface. The effect of BTPA-4 as HSL in the device performance is especially significant for the open-circuit voltage (V) and power conversion efficiency (PCE), with a ∼ 10% and 15% enhancement respectively, comparing with those of device without the HSL.

View Article and Find Full Text PDF

The surface chemistry of colloidal quantum dots (QDs) plays an important role in determining the photoelectric properties of QD films and the corresponding quantum dot heterojunction solar cells (QDHSCs). To investigate the effects of the ligand structure on the photovoltaic performance and exciton dynamics of QDHSCs, PbS QDHSCs were fabricated by the solid state ligand exchange method with mercaptoalkanoic acid as the cross-linking ligand. Temperature-dependent photoluminescence and ultrafast transient absorption spectra show that the electronic coupling and charge transfer rate within QD ensembles were monotonically enhanced as the ligand length decreased.

View Article and Find Full Text PDF

The interface between the perovskite (PVK, CH NH PbI ) and hole-transport layers in perovskite solar cells is discussed. The device architecture studied is as follows: F-doped tin oxide (FTO)-coated glass/compact TiO /mesoporous TiO /PVK/2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-MeOTAD)/Au. After a thin layer of 4,4,4-trifluorobutylammonium iodide (TFBA) was inserted at the interface between PVK and Spiro-MeOTAD, the photovoltaic efficiency increased from 11.

View Article and Find Full Text PDF

Model squaraine dyes having sharp and narrow absorptions mainly in the far-red wavelength region has been logically designed, synthesized and used for their application as sensitizer in the dyesensitized solar cells (DSSC). In order to have fine control on energetics, dyes having same mother core and alkyl chain length varying only in molecular symmetry and position of substituent were designed. It has been found that even keeping all other structural factor constant, only positional variation of substituent leads to not only in the variation of energetics by 0.

View Article and Find Full Text PDF

A very good performance under low/diffused light intensities is one of the application areas in which dye-sensitized solar cells (DSSCs) can be utilized effectively compared to their inorganic silicon solar cell counterparts. In this article, we have investigated the 1 SUN and low intensity fluorescent light performance of Titanium (Ti)-coil based cylindrical DSSC (C-DSSC) using ruthenium based N719 dye and organic dyes such as D205 and Y123. Electrochemical impedance spectroscopic results were analyzed for variable solar cell performances.

View Article and Find Full Text PDF

In this work, a new current peak at forward bias in the dark current-voltage curves has been identified for standard mesoscopic perovskite solar cells. This characteristic peak appears only under some specific conditions, mainly in the reverse scan (RS) direction and when the solar cells were kept for several seconds under short-circuit conditions before starting the RS measurement. This peak disappears when the above experimental conditions are not applied.

View Article and Find Full Text PDF

Twenty-four D-A'-π-A dyes were rapidly synthesized through a one-pot three-component Suzuki-Miyaura coupling reaction, which was assisted by microwave irradiation. We measured the absorption spectra, electrochemical properties, and solar-cell performance of all the synthesized dyes. The D5 πA4 dye contained our originally designed rigid and nonplanar donor and exerted the highest efficiency at 5.

View Article and Find Full Text PDF

This one-pot, four-component coupling approach (Suzuki-Miyaura coupling/C-H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene-based organic dyes for dye-sensitized solar cells (DSSCs). Seven thiophene-based, organic dyes of various donor structures with/without the use of a 3,4-ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one-pot, 3-step, 35-61%). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short-circuit current (Jsc) while decreasing the fill factor (FF).

View Article and Find Full Text PDF

Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs).

View Article and Find Full Text PDF

The intriguing photoactive features of organic-inorganic hybrid perovskites have enabled the preparation of a new class of highly efficient solar cells. However, the fundamental properties, upon which the performance of these devices is based, are currently under-explored, making their elucidation a vital issue. Herein, we have investigated the local mobility, recombination, and energetic landscape of charge carriers in a prototype CH3NH3PbI3 perovskite (PVK) using a laser-flash time-resolved microwave conductivity (TRMC) technique.

View Article and Find Full Text PDF

In recent years, organometal halide perovskite-based solid-state hybrid solar cells have attracted unexpected increasing interest because of their high efficiency (the record power conversion efficiency has been reported to be over 15%) and low fabrication cost. It has been accepted that the high efficiency was mainly attributed to the strong optical absorption (absorption coefficient: 15,000 cm(-1) at 550 nm) over a broader range (up to 800 nm) and the long lifetimes of photoexcited charge carriers (in the order of 10 ns - a few 100 ns) of the perovskite absorbers. However, much of the fundamental photophysical properties of perovskite relating to the high photovoltaic performance are remained to be investigated.

View Article and Find Full Text PDF

The creation of organic dyes with excellent high power conversion efficiency (PCE) is important for the further improvement of dye-sensitized solar cells. We wish to describe the rapid synthesis of a 112-membered donor-π-acceptor dye library by a one-pot procedure, evaluation of PCEs, and elucidation of structure-property relationships. No obvious correlations between ε, and the η were observed, whereas the HOMO and LUMO levels of the dyes were critical for η.

View Article and Find Full Text PDF

We report photovoltaic performances of all-solid state Sn/Pb halide-based perovskite solar cells. The cell has the following composition: F-doped SnO2 layered glass/compact titania layer/porous titania layer/CH3NH3SnxPb(1-x)I3/regioregular poly(3-hexylthiophene-2,5-diyl). Sn halide perovskite itself did not show photovoltaic properties.

View Article and Find Full Text PDF

The relationship between the structure of the charge-separation interface and the photovoltaic performance of all-solid dye-sensitized solar cells is reported. This cell is composed of porous a TiO2/perovskite (CH3NH3PbI(x)Cl(3-x))/p-type organic conductor. The porous titania layer was passivated with Al2O3 or Y2O3 to remove surface traps of the porous titania layer.

View Article and Find Full Text PDF

The charge separation and charge recombination dynamics in P3HT-ZnO and P3HT-dye-ZnO bulk heterojunction organic-inorganic hybrid solar cells (OIHSCs) prepared by a one-pot method were studied using a transient absorption (TA) method, both for optical absorption of P3HT in the visible region and for optical absorption of SQ36 in the NIR region. In the case of P3HT-ZnO, the charge separation was very fast, occurring within 1 ps. On the other hand, high charge recombination between electrons in the surface states and/or the conduction band of ZnO and holes in P3HT was observed.

View Article and Find Full Text PDF

Understanding the electron transfer dynamics at the interface between dye sensitizer and semiconductor nanoparticle is very important for both a fundamental study and development of dye-sensitized solar cells (DSCs), which are a potential candidate for next generation solar cells. In this study, we have characterized the ultrafast photoexcited electron dynamics in a newly produced linearly-linked two dye co-sensitized solar cell using both a transient absorption (TA) and an improved transient grating (TG) technique, in which tin(IV) 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (NcSn) and cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) bis(tetrabutylammonium) (N719) are molecularly and linearly linked and are bonded to the surface of a nanocrystalline tin dioxide (SnO(2)) electrode by a metal-O-metal linkage (i.e.

View Article and Find Full Text PDF