Cyclin-dependent kinases (CDKs) orchestrate cell cycle progression through precise temporal control of substrate phosphorylation. While traditional biochemical approaches and phosphoproteomics have provided valuable insights into CDK-mediated regulation, these methods require cell population analyses and cannot capture real-time dynamics in individual cells. The recent development of fluorescent biosensors has revolutionized our ability to monitor CDK activity in living cells with unprecedented temporal and spatial resolution.
View Article and Find Full Text PDFAnhydrobiosis, a phenomenon in which organisms survive extreme dehydration by entering a reversible ametabolic state, is a remarkable example of survival strategies. This study focuses on anhydrobiosis in tardigrades, which are known for their resilience to severe environmental conditions. Tardigrades utilize several protective mechanisms against desiccation, notably the constitutive expression of cytoplasmic abundant heat soluble (CAHS) proteins in Ramazzottius varieornatus.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2024
The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues.
View Article and Find Full Text PDFThe cAMP-PKA signaling pathway plays a crucial role in sensing and responding to nutrient availability in the fission yeast Schizosaccharomyces pombe. This pathway monitors external glucose levels to control cell growth and sexual differentiation. However, the temporal dynamics of the cAMP-PKA pathway in response to external stimuli remains unclear mainly due to the lack of tools to quantitatively visualize the activity of the pathway.
View Article and Find Full Text PDFCyclin-dependent kinase (CDK) determines the temporal ordering of the cell cycle phases. However, despite significant progress in studying regulators of CDK and phosphorylation patterns of CDK substrates at the population level, it remains elusive how CDK regulators coordinately affect CDK activity at the single-cell level and how CDK controls the temporal order of cell cycle events. Here, we elucidate the dynamics of CDK activity in fission yeast and mammalian cells by developing a CDK activity biosensor, Eevee-spCDK.
View Article and Find Full Text PDFCells sense extracellular stimuli through membrane receptors and process information through an intracellular signaling network. Protein translocation triggers intracellular signaling, and techniques such as chemically induced dimerization (CID) have been used to manipulate signaling pathways by altering the subcellular localization of signaling molecules. However, in the fission yeast , the commonly used FKBP-FRB system has technical limitations, and therefore, perturbation tools with low cytotoxicity and high temporal resolution are needed.
View Article and Find Full Text PDFThe stress response is one of the most fundamental cellular processes. Although the molecular mechanisms underlying responses to a single stressor have been extensively studied, cellular responses to multiple stresses remain largely unknown. Here, we characterized fission yeast cellular responses to a novel stress inducer, non-thermal atmospheric-pressure plasma.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) play an important role in sensing various extracellular stimuli, such as neurotransmitters, hormones, and tastants, and transducing the input information into the cell. While the human genome encodes more than 800 GPCR genes, only four Gα-proteins (Gαs, Gαi/o, Gαq/11, and Gα12/13) are known to couple with GPCRs. It remains unclear how such divergent GPCR information is translated into the downstream G-protein signaling dynamics.
View Article and Find Full Text PDFDopamine (DA) and norepinephrine (NE) are pivotal neuromodulators that regulate a broad range of brain functions, often in concert. Despite their physiological importance, untangling the relationship between DA and NE in the fine control of output function is currently challenging, primarily due to a lack of techniques to allow the observation of spatiotemporal dynamics with sufficiently high selectivity. Although genetically encoded fluorescent biosensors have been developed to detect DA, their poor selectivity prevents distinguishing DA from NE.
View Article and Find Full Text PDFNear-infrared fluorescent protein (iRFP) is a bright and stable fluorescent protein with near-infrared excitation and emission maxima. Unlike the other conventional fluorescent proteins, iRFP requires biliverdin (BV) as a chromophore. Here, we report that phycocyanobilin (PCB) functions as a brighter chromophore for iRFP than BV, and that biosynthesis of PCB allows live-cell imaging with iRFP in the fission yeast Schizosaccharomyces pombe.
View Article and Find Full Text PDFFission yeast is a good model organism for the study of lifespan. To elucidate the mechanism, we screened for long-lived mutants. We found a nonsense mutation in the ksg1 gene, which encodes an ortholog of mammalian PDK1 (phosphoinositide-dependent protein kinase).
View Article and Find Full Text PDFThe extracellular signal-regulated kinase (ERK) pathway governs cell proliferation, differentiation and migration, and therefore plays key roles in various developmental and regenerative processes. Recent advances in genetically encoded fluorescent biosensors have unveiled hitherto unrecognized ERK activation dynamics in space and time and their functional importance mainly in cultured cells. However, ERK dynamics during embryonic development have still only been visualized in limited numbers of model organisms, and we are far from a sufficient understanding of the roles played by developmental ERK dynamics.
View Article and Find Full Text PDFCells respond to a wide range of extracellular stimuli, and process the input information through an intracellular signaling system comprised of biochemical and biophysical reactions, including enzymatic and protein-protein interactions. It is essential to understand the molecular mechanisms underlying intracellular signal transduction in order to clarify not only physiological cellular functions but also pathological processes such as tumorigenesis. Fluorescent proteins have revolutionized the field of life science, and brought the study of intracellular signaling to the single-cell and subcellular levels.
View Article and Find Full Text PDFApical constriction is critical for epithelial morphogenesis, including neural tube formation. Vertebrate apical constriction is induced by di-phosphorylated myosin light chain (ppMLC)-driven contraction of actomyosin-based circumferential rings (CRs), also known as perijunctional actomyosin rings, around apical junctional complexes (AJCs), mainly consisting of tight junctions (TJs) and adherens junctions (AJs). Here, we revealed a ppMLC-triggered system at TJ-associated CRs for vertebrate apical constriction involving microtubules, LUZP1, and myosin phosphatase.
View Article and Find Full Text PDFOptogenetics is a powerful technique using photoresponsive proteins, and the light-inducible dimerization (LID) system, an optogenetic tool, allows to manipulate intracellular signaling pathways. One of the red/far-red responsive LID systems, phytochrome B (PhyB)-phytochrome interacting factor (PIF), has a unique property of controlling both association and dissociation by light on the second time scale, but PhyB requires a linear tetrapyrrole chromophore such as phycocyanobilin (PCB), and such chromophores are present only in higher plants and cyanobacteria. Here, we report that we further improved our previously developed PCB synthesis system (SynPCB) and successfully established a stable cell line containing a genetically encoded PhyB-PIF LID system.
View Article and Find Full Text PDFKinetic simulation is a useful approach for elucidating complex cell-signaling systems. The numerical simulations required for kinetic modeling in live cells critically require parameters such as protein concentrations and dissociation constants ( ). However, only a limited number of parameters have been measured experimentally in living cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2017
Optogenetics is a powerful tool to precisely manipulate cell signaling in space and time. For example, protein activity can be regulated by several light-induced dimerization (LID) systems. Among them, the phytochrome B (PhyB)-phytochrome-interacting factor (PIF) system is the only available LID system controlled by red and far-red lights.
View Article and Find Full Text PDFSister-chromatid cohesion is established by the cohesin complex in S phase and persists until metaphase, when sister chromatids are captured by microtubules emanating from opposite poles [1]. The Aurora-B-containing chromosome passenger complex (CPC) plays a crucial role in achieving chromosome bi-orientation by correcting erroneous microtubule attachment [2]. The centromeric localization of the CPC relies largely on histone H3-T3 phosphorylation (H3-pT3), which is mediated by the mitotic histone kinase Haspin/Hrk1 [3-5].
View Article and Find Full Text PDFCa release from the sarcoplasmic reticulum (SR) and endoplasmic reticulum (ER) is crucial for muscle contraction, cell growth, apoptosis, learning and memory. The trimeric intracellular cation (TRIC) channels were recently identified as cation channels balancing the SR and ER membrane potentials, and are implicated in Ca signaling and homeostasis. Here we present the crystal structures of prokaryotic TRIC channels in the closed state and structure-based functional analyses of prokaryotic and eukaryotic TRIC channels.
View Article and Find Full Text PDFFor proper partitioning of genomes in mitosis, all chromosomes must be aligned at the spindle equator before the onset of anaphase. The spindle assembly checkpoint (SAC) monitors this process, generating a 'wait anaphase' signal at unattached kinetochores of misaligned chromosomes. However, the link between SAC activation and chromosome alignment is poorly understood.
View Article and Find Full Text PDFProper chromosome segregation during cell division is essential for proliferation, and this is facilitated by kinetochores, large protein complexes assembled on the centromeric region of the chromosomes. Although the sequences of centromeric DNA differ totally among organisms, many components of the kinetochores assembled on centromeres are very well conserved among eukaryotes. To define the identity of centromeres, centromere protein A (CENP-A), which is homologous to canonical histone H3, acts as a landmark for kinetochore assembly.
View Article and Find Full Text PDFTBK5 is a plant-specific kinesin constantly expressed in tobacco BY-2 cells. An analysis of the distribution of green fluorescent protein-tagged TBK5 (GFP-TBK5) transiently expressed in BY-2 protoplasts revealed that TBK5 could associate with microtubules in vivo. GFP-TBK5 often assembled to form a single particle when accumulated in cells.
View Article and Find Full Text PDF