Terminally ill children (TIC) in pediatric palliative care often encounter psychological deprivation due to isolation, impacting their self-discovery and identity formation. The Young Pioneer Voluntary Teams (YPVTs), initiated by the Ministry of Education of China, address these challenges while also benefiting adolescents with enhanced self-esteem and self-efficacy. However, the current lack of a standardized approach in integrating youth volunteerism into pediatric care raises concerns about potential negative impacts on TIC.
View Article and Find Full Text PDFEvidence has evinced the functional complexity, anatomical heterogeneity, connectivity diversity, and clinical relevance of the fusiform gyrus. We aimed to investigate the hierarchical organization of the fusiform gyrus and its underlying molecular basis. Resting-state functional MRI data of 793 healthy subjects were collected from a discovery dataset and two independent cross-scanner, cross-race validation datasets.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2025
β-GaO is one of the new-generation wide-bandgap semiconductor materials that has attracted much attention in recent years. However, the reported room-temperature electron mobility of β-GaO is much lower than GaN and SiC. Alloying GaO is expected to endow the material with superior carrier transport properties.
View Article and Find Full Text PDFIn the rapid urbanization process in China, due to reasons such as employment, education, and family reunification, the number of mobile population without registered residence in the local area has increased significantly. By 2020, the group had a population of 276 million, accounting for over 20% of the total population, making significant contributions to urban economic development and resource optimization. However, the health status of migrant populations is affected by unique issues such as occupational risks and socio-economic disparities, which play an important role in personal welfare, social stability, and sustainable economic growth.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2024
The last decade has witnessed the growing prevalence of deep models on soft sensing in industrial processes. However, most of the existing soft sensing models are developed to learn from regular data in the Euclidean space, ignoring the complex coupling relations among process variables. On the other hand, graph networks are gaining attraction in handling non-Euclidean relations in industrial data.
View Article and Find Full Text PDFBackground: Growing evidence points to the pivotal role of vitamin D in the pathophysiology and treatment of major depressive disorder (MDD). However, there is a paucity of longitudinal research investigating the effects of vitamin D supplementation on the brain of MDD patients.
Methods: We conducted a double-blind randomized controlled trial in 46 MDD patients, who were randomly allocated into either VD (antidepressant medication + vitamin D supplementation) or NVD (antidepressant medication + placebos) groups.
Major depressive disorder (MDD) is a heterogeneous syndrome, and understanding its neural mechanisms is crucial for the advancement of personalized medicine. However, conventional subtyping studies often categorize MDD patients into a single subgroup, neglecting the continuous interindividual variations. This implies a pressing need for a dimensional approach.
View Article and Find Full Text PDFWith the increasing level in the intensification of agricultural production in China, continuous cropping obstacles have become a problem that needs to be solved. The use of vertical rotary tillage technology and soil disinfection technology is an effective solution. In this paper, a vertical rotary soil-tilling variable disinfection combine was developed and an on-board control system with STM32 as the control core was designed to realize the real-time acquisition of powder monopoly torque information and the variable application of soil disinfection chemicals.
View Article and Find Full Text PDFHeterogeneity of the cingulate cortex is evident in multiple dimensions including anatomy, function, connectivity, and involvement in networks and diseases. Using the recently developed functional connectivity gradient approach and resting-state functional MRI data, we found three functional connectivity gradients that captured distinct dimensions of cingulate hierarchical organization. The principal gradient exhibited a radiating organization with transitions from the middle toward both anterior and posterior parts of the cingulate cortex and was related to canonical functional networks and corresponding behavioral domains.
View Article and Find Full Text PDFHum Brain Mapp
February 2023
The diverse functional roles of the insula may emerge from its heavy connectivity to an extensive network of cortical and subcortical areas. Despite several previous attempts to investigate the hierarchical organization of the insula by applying the recently developed gradient approach to insula-to-whole brain connectivity data, little is known about whether and how there is variability across connectivity gradients of the insula to different cerebral systems. Resting-state functional MRI data from 793 healthy subjects were used to discover and validate functional connectivity gradients of the insula, which were computed based on its voxel-wise functional connectivity profiles to distinct cerebral systems.
View Article and Find Full Text PDFFront Neurorobot
August 2022
As bio-inspired vision devices, dynamic vision sensors (DVS) are being applied in more and more applications. Unlike normal cameras, pixels in DVS independently respond to the luminance change with asynchronous output spikes. Therefore, removing raindrops and streaks from DVS event videos is a new but challenging task as the conventional deraining methods are no longer applicable.
View Article and Find Full Text PDFThe human sensorimotor cortex has multiple subregions showing functional commonalities and differences, likely attributable to their connectivity profiles. However, the molecular substrates underlying such connectivity profiles are unclear. Here, transcriptome-neuroimaging spatial correlation analyses were performed between transcriptomic data from the Allen human brain atlas and resting-state functional connectivity (rsFC) of 24 fine-grained sensorimotor subregions from 793 healthy subjects.
View Article and Find Full Text PDFSpin-orbit coupling (SOC) plays an important role in condensed matter physics and has potential applications in spintronics devices. In this paper, we study the electronic properties of ferroelectric CuInPS(CIPS) monolayer through first-principles calculations. The result shows that CIPS monolayer is a potential for valleytronics material and we find that the in-plane helical and nonhelical pseudospin texture are induced by the Rashba and Dresselhaus effect, respectively.
View Article and Find Full Text PDFUsing the first-principles calculations, we explore the nearly free electron (NFE) states in the transition-metal dichalcogenides(= Mo, W;= S, Se, Te) monolayers. It is found that both the external electric field and electron (not hole) injection can flexibly tune the energy levels of the NFE states, which can shift down to the Fermi level and result in novel transport properties. In addition, we find that the valley polarization can be induced by both electron and hole doping in MoTemonolayer due to the ferromagnetism induced by the charge injection, which, however, is not observed in other five kinds ofmonolayers.
View Article and Find Full Text PDFWorking memory impairment is a common feature of psychiatric disorders. Although its neural mechanisms have been extensively examined in healthy subjects or individuals with a certain clinical condition, studies investigating neural predictors of working memory in a transdiagnostic sample are scarce. The objective of this study was to create a transdiagnostic predictive working memory model from whole-brain functional connectivity using connectome-based predictive modeling (CPM), a recently developed machine learning approach.
View Article and Find Full Text PDFThe real capacity of graphene and the lithium-storage process in graphite are two currently perplexing problems in the field of lithium ion batteries. Here we demonstrate a three-dimensional bilayer graphene foam with few defects and a predominant Bernal stacking configuration, and systematically investigate its lithium-storage capacity, process, kinetics, and resistances. We clarify that lithium atoms can be stored only in the graphene interlayer and propose the first ever planar lithium-intercalation model for graphenic carbons.
View Article and Find Full Text PDF1T-1H metal-semiconductor interfaces in two-dimensional (2D) transition-metal dichalcogenides (TMDs) play a crucial role in utilizing the band gaps of TMDs for applications in electronic devices. Although the 1T-1H two-phase structure has been observed in exfoliated 2D nanosheets and chemically or physically treated TMDs, it cannot in principle be achieved in large-scale TMD monolayers grown by chemical vapor deposition (CVD), which is a fabrication method for electronic device applications, because of the metastable nature of the 1T phase. In this study we report CVD growth of 1T-1H two phase TMD monolayers by controlling thermal strains and alloy compositions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2017
As a typical transition-metal dichalcogenides, MoS has been a hotspot of research in many fields. In this work, the MoS nanosheets were compounded on 1T-VS nanoflowers (VS@MoS) successfully by a two-step hydrothermal method for the first time, and their hydrogen evolution properties were studied mainly. The higher charge-transfer efficiency benefiting from the metallicity of VS and the greater activity due to more exposed active edge sites of MoS improve the hydrogen evolution reaction performance of the nanocomposite electrocatalyst.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2017
Considerable progress in contemporary spintronics has been made in recent years for developing nanoscale data memory and quantum information processing. It is, however, still a great challenge to achieve the ultimate limit of storage bit. 2D materials, fortunately, provide an alternative solution for designing materials with the expected miniaturizing scale, chemical stability as well as giant magnetic anisotropy energy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2017
Grain boundaries (GBs) are unavoidable crystal defects in polycrystalline materials and significantly influence their properties. However, the structure and chemistry of GBs in 2D transition metal dichalcogenide alloys have not been well established. Here we report significant chemical selectivity of transition metal atoms at GB dislocation cores in MoWS monolayers.
View Article and Find Full Text PDFThe interplay between chemical dopants and topological defects plays a crucial role in electrocatalysis of doped graphene. By systematically tuning the curvatures, thereby the density of topological defects, of 3D nanoporous graphene, the intrinsic correlation of topological defects with chemical doping contents and dopant configurations is revealed, shining lights into the structural and chemical origins of HER activities of graphene.
View Article and Find Full Text PDF