Tobacco bacterial wilt is a major limiting factor for tobacco production and development, and it is more likely to occur under perennial single cropping of tobacco. In recent years, the rotation of tobacco-radish has gradually become popular. Therefore, we studied the effects of years of tobacco-radish rotation on tobacco bacterial wilt occurrence and rhizosphere microorganisms.
View Article and Find Full Text PDFRalstonia solanacearum (R. solanacearum) is one of the most devastating pathogens in terms of losses in agricultural production. Bentonite (Bent) is a promising synergistic agent used in development of effective and environmentally friendly pesticides against plant disease.
View Article and Find Full Text PDFThe exploration of biopolymer-based materials to avoid hazardous chemicals in agriculture has gained enormous importance for sustainable crop protection. Due to its good biocompatibility and water solubility, carboxymethyl chitosan (CMCS) has been widely applied as a pesticide carrier biomaterial. However, the mechanism by which carboxymethyl chitosan-grafted natural product nanoparticles induce tobacco systemic resistance against bacterial wilt remains largely unknown.
View Article and Find Full Text PDFPost-translational modifications (PTMs) fine-tune various signaling pathways not only by the modification of a single residue, but also by the interplay of different modifications on residue pairs within or between proteins, defined as PTM cross-talk. As a challenging question, less attention has been given to PTM dynamics underlying cross-talk residue pairs and structural information underlying protein-protein interaction (PPI) graph, limiting the progress in this PTM functional research. Here we propose a novel integrated deep neural network PPICT (Predictor for PTM Inter-protein Cross-Talk), which predicts PTM cross-talk by combining protein sequence-structure-dynamics information and structural information for PPI graph.
View Article and Find Full Text PDFThe human AAA+ ATPase CLPB (SKD3) is a protein disaggregase in the mitochondrial intermembrane space (IMS) and functions to promote the solubilization of various mitochondrial proteins. Loss-of-function CLPB mutations are associated with a few human diseases with neutropenia and neurological disorders. Unlike canonical AAA+ proteins, CLPB contains a unique ankyrin repeat domain (ANK) at its N-terminus.
View Article and Find Full Text PDFNat Commun
September 2022
The Subantarctic Southern Ocean has long been thought to be an important contributor to increases in atmospheric carbon dioxide partial pressure (pCO) during glacial-interglacial transitions. Extensive studies suggest that a weakened biological pump, a process associated with nutrient utilization efficiency, drove up surface-water pCO in this region during deglaciations. By contrast, regional influences of the solubility pump, a process mainly linked to temperature variations, have been largely overlooked.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
November 2021
With the widespread application of next-generation sequencing(NGS), especially 16 S rRNA and shotgun sequencing, researchers are no longer troubled with massive data on the gut microbiota, and the correlation between the gut microbiota and the brain(central nervous system) has been gradually revealed. Research on the microbiota-gut-brain axis(MGBA) based on the gut microbiota have provided insights into the exploration of the pathogenesis and risk factors of ischemic stroke(IS), a cerebrovascular disease with high disability and mortality rates, and also facilitate the selection of therapeutic targets of this class of drugs. This study reviewed the application of NGS in the study of gut microbiota and the research progress of MGBA in recent years and systematically collated the research papers on the correlation between IS and gut microbiota.
View Article and Find Full Text PDFBreast cancer is one of the most common malignant diseases among women worldwide, and the existence of breast cancer stem cells is closely associated with poor outcomes. Herein, we report an electrochemical phenotyping method to characterize the stemlike phenotype in breast cancer, offering a low-cost but robust choice other than the highly expensive and experience-dependent flow cytometry. Specially, after immune-magnetic beads-assisted enrichment, an in situ programmable DNA circuit is designed using capture probes to bring in the toeholds for DNA assembly and effector probes to accelerate the removal of background signals.
View Article and Find Full Text PDFColon cancer is an aggressive malignancy with very limited therapeutic approaches. The available therapeutic agents for colon cancer show strong adverse effects and poor effectiveness, indicating the urgent need to identify new therapeutic drugs for this malignancy. Kaempferol, a flavonoid found in a variety of natural foods, exhibits significant inhibitory effects on colon cancer.
View Article and Find Full Text PDFBiosens Bioelectron
September 2019
Nowadays, exosomes that carry abundant information have attracted increasing attention as potent biomarkers of liquid biopsy and ideal candidates for early diagnosis and treatment of cancers. In this work, we propose a "principle-of-proof" biosensing method for amplified electrochemical detection of exosomes by using HepG2-derived exosomes as models. Specifically, target exosomes are enriched on anti-CD63-functionalized immunobeads and then recognized by a DNA chain containing CD63 aptamer region, which subsequently initiates a catalytic molecule machine that relies on cascade toehold-mediated strand displacement reaction.
View Article and Find Full Text PDFCancer stem-like cells are closely related with the development and metastasis of tumors. Herein, an electrochemical method is proposed to identify stem-like cells in breast tumor. The core concept of the method is the use of multifunctional nanofibers (MNFs), which are synthesized through facile self-assembly of peptide probes.
View Article and Find Full Text PDFIn this work, toehold strand displacement cascade (TSDC) has been delicately designed and carried out on the cellular interface for the amplification and output of dual-electrochemical signal. Specifically, antibody cross-linked T strand can recognize cell which is linked with immune-magnetic bead. Subsequently, T strand on the cellular interface can mediate the occurrence of TSDC, resulting the change of SN/S1-MB to SN/S2-Fc ratio in the supernatant after magnetic separation.
View Article and Find Full Text PDFIn this work, DNA-templated silver nanoclusters (DNA-AgNCs) with unique fluorescent and electrochemical properties are prepared as dual signal probes for both qualitative imaging and quantitative detection of cancer cells in an integrated system. ITO electrode that has good light transmittance and electric conductivity is employed as a substrate for dual analysis of cancer cells. ITO electrode is firstly modified by AS1141 aptamer, which could selectively bind to nucleolin overexpressed on the surface of a model breast cancer cell, MCF-7 cell line.
View Article and Find Full Text PDFProtein kinases play a critical role in regulation of intracellular signal transduction, whose aberrant expression is closely associated with various dangerous human diseases. In this paper, we propose a feasible electrochemical assay of intracellular kinase by incorporating peptide nanoprobe-assisted signal labeling and signal amplification. Protein kinase A (PKA)-specific peptide P1 is self-assembled on the surface of a gold electrode, serine of which could be phosphorylated with catalysis of PKA in the presence of adenosine-5'-triphosphate (ATP).
View Article and Find Full Text PDF