Head and Neck Squamous Cell Carcinoma (HNSCC) is a widespread malignancy originating from the mucous epithelium of the oral cavity, pharynx, and larynx. Despite advances in diagnostic and therapeutic modalities, the prognosis of HNSCC remains challenging. This study investigates the intricate relationship among COPS5, immune infiltration patterns, and prognostic implications in HNSCC.
View Article and Find Full Text PDFFirefighting clothing is an indispensable protective equipment for firefighters performing rescue activities under extreme heat and fire conditions. However, few bio-based thermal management materials that provide thermal comfort to firefighters in different operational scenarios have been reported. Herein, we present a novel strategy to prepare Janus-type aerogels based on sodium alginate biological macromolecules, consisting of a SiO nanoparticle layer and a microencapsulated paraffin@SiO phase-change composite layer.
View Article and Find Full Text PDFPulmonary fibrosis (PF) is a chronic, progressive, and fatal lung disease with a high mortality rate. Nintedanib, as a multi-tyrosine kinase inhibitor, is widely used as the first line drug for PF patients. However, only nintedanib oral formulations are used currently in clinic and show a low drug selectivity, significant first-pass effect and low bioavailability with 4.
View Article and Find Full Text PDFFirefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission. A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground. However, it is still a challenge to facilely design and manufacture thermoelectric (TE) textile (TET)-based fire warning electronics with dynamic surface conformability and breathability.
View Article and Find Full Text PDFAcute lung injury (ALI) can be induced by various injury factors, which is closely related to the inflammatory reaction and cellular ferroptosis reported recently. Glutathione peroxidase (GPX4) palys an important role in the inflammatory reaction, which also is the core regulatory protein of ferroptosis. Up-regulation of GPX4 can be helpful to inhibit the cellular ferroptosis and inflammatory reaction to treat ALI.
View Article and Find Full Text PDFThe serious side effects of cisplatin hindered its clinical application and the nanotechnology might be the potential strategy to address the limitation. However, rapid clearance in the blood circulation and ineffective controlled drug release from nanocarriers hamper the therapeutic efficacy of the nano-delivery system. We constructed a tumor microenvironment and redox dual stimuli-responsive nano-delivery system PEG-c-(BPEI-SS-Pt) by cross-linking the disulfide-containing polymeric conjugate BPEI-SS-Pt with the dialdehyde group-modified PEGvia Schiff base.
View Article and Find Full Text PDFIn order to meet the targeted dispersion requirements of applications, hybridized modes of coupled waveguides, whose dispersion characteristics can be significantly altered around their mode cross-point, have been recently investigated. The applications have been applied to microresonators based on concentric waveguides with a thin silicon nitride layer. However, it is still challenging to achieve a low and flattened anomalous dispersion profile just by optimizing the gap width between the waveguides.
View Article and Find Full Text PDFA polarization-modulation-based Goos-Hanchen (GH) sensing scheme leveraging the polarization-dependence of the Bloch surface wave enhanced GH shift is proposed and experimentally demonstrated. Based on a simple setup utilizing a liquid crystal modulator to switch the polarization state of the input beam periodically, the alternating positions of the reflected beam for both polarizations are monitored by a lock-in amplifier to handily retrieve the GH shift signal. The conventional direct measurement of the beam position for the target state of polarization is vulnerable to instabilities in the optomechanical setup and alignment.
View Article and Find Full Text PDFA polarimetric-phase-enhanced intensity interrogation scheme leveraging the polarization-dependent sharp phase change induced by the surface wave excitation at a low-optical-loss sensor's surface is proposed and experimentally demonstrated. Based on a simple setup with no moving parts during interrogation, a polarimetric-phase-enhanced intensity can be obtained by subtracting the reflected intensities of two beam polarization states. Our results show a ~4-fold sensitivity increase compared to traditional intensity detection schemes for similar sensors.
View Article and Find Full Text PDFA compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated.
View Article and Find Full Text PDFGoos-Hanchen effect is experimentally studied when the Bloch surface wave is excited in the forbidden band of a one-dimensional photonic band-gap structure. By tuning the refractive index of the cladding covering the truncated photonic crystal structure, either a guided or a surface mode can be excited. In the latter case, strong enhancement of the Goos-Hanchen shift induced by the Bloch-surface-wave results in sub-millimeter shifts of the reflected beam position.
View Article and Find Full Text PDFGiant Goos-Hänchen (GH) shifts are experimentally demonstrated from a prism-coupled multilayer structure incorporating a one-dimensional photonic crystal (PC) through a bandgap-enhanced total internal reflection scheme. By combining the large phase changes near the bandgap of the PC and the low reflection loss of the total internal reflection, 2 orders of magnitude enhancement of the GH shift is realized with rather low extra optical loss, which might help to open the door toward many interesting applications for GH effects.
View Article and Find Full Text PDFThe propagation-dependent profile distortion of the reflected beam is studied via deriving the theoretical model of the optical field distribution in both the near and far field. It is shown that strong and fast-varying beam distortions can occur along the propagation path, compared to the profile on the reflecting surface. Numerical simulations for the case of a typical SPR configuration with a sharp angular response curve reveal that, when the phase distribution in the angular range covered by the input beam becomes nonlinear, previous theories based on the linear phase approximation fail to predict the Goos-Hanchen shift and its propagation-dependent variations precisely.
View Article and Find Full Text PDFHere we experimentally demonstrate measurements of the wavelength-dependent phase response of a surface plasmon resonance sensor using a spectral interferometric technique. By using a broadband incoherent fiber light source and a polarimetry configuration with a high-birefringence component, the spectral phase response of a surface plasmon resonance sensor can be retrieved. A combination of wavelength interrogation and phase detection is enabled by our proposed scheme.
View Article and Find Full Text PDF