Electrolyte wettability significantly effects the electrochemical performance of lithium-ion batteries (LIBs). In this study, buoyancy testing is employed to accurately measure the force-time curve of electrolyte penetration into the electrodes and thereby calculate the wettability rate. Electrochemical performance is comprehensively evaluated through CR2025 coin half-cell testing, four-point probe analysis, and C-rate cycling experiments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
Lithium (Li) metal has garnered significant attention as the preferred anode for high-energy lithium metal batteries. However, safety concerns arising from the growth of Li dendrites have hindered the advancement of Li metal batteries. In this study, we first elucidate the impact of external pressure and internal stress on dendrite growth and dissolution behavior of Li metal batteries during continuous charging-discharging cycles, employing a developed electrochemomechanical phase-field model.
View Article and Find Full Text PDF