Phospholipids are asymmetrically distributed in the plasma membrane (PM), and scramblases disrupt this asymmetry by shuffling phospholipids. We recently identified mouse Tmem63b as a membrane structure-responsive scramblase. Tmem63b belongs to the TMEM63/OSCA family of ion channels; however, the conservation of the scramblase activity within this family remains unclear.
View Article and Find Full Text PDFPhospholipids are asymmetrically distributed in the plasma membrane (PM), with phosphatidylcholine and sphingomyelin abundant in the outer leaflet. However, the mechanisms by which their distribution is regulated remain unclear. Here, we show that transmembrane protein 63B (TMEM63B) functions as a membrane structure-responsive lipid scramblase localized at the PM and lysosomes, activating bidirectional lipid translocation upon changes in membrane curvature and thickness.
View Article and Find Full Text PDFPv11 is the only animal cell line that, when preconditioned with a high concentration of trehalose, can be preserved in the dry state at room temperature for more than one year while retaining the ability to resume proliferation. This extreme desiccation tolerance is referred to as anhydrobiosis. Here, we identified a transporter that contributes to the recovery of Pv11 cells from anhydrobiosis.
View Article and Find Full Text PDFThe plasma membrane containing cholesterol exhibits phospholipid asymmetry, with phosphatidylcholine and sphingomyelin enriched in its outer leaflet and phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) on the cytoplasmic side. We herein describe steps for bacterial expression of recombinant proteins that bind to membrane lipids, followed by affinity purification. Using fluorescence-labeled phospholipid analogs, we further detail the assay to detect flippase activity, which maintains the single-sided distribution of PtdSer and PtdEtn, in mammalian cells.
View Article and Find Full Text PDFPhospholipids are asymmetrically distributed between the lipid bilayer of plasma membranes in which phosphatidylserine (PtdSer) is confined to the inner leaflet. ATP11A and ATP11C, type IV P-Type ATPases in plasma membranes, flip PtdSer from the outer to the inner leaflet, but involvement of other P4-ATPases is unclear. We herein demonstrated that once PtdSer was exposed on the cell surface of ATP11AATP11C mouse T cell line (W3), its internalization to the inner leaflet of plasma membranes was negligible at 15 °C.
View Article and Find Full Text PDFAnhydrobiosis, an adaptive ability to withstand complete desiccation, in the nonbiting midge , is associated with the emergence of new multimember gene families, including a group of 27 genes of late embryogenesis abundant (LEA) proteins (). To obtain new insights into the possible functional specialization of these genes, we investigated the expression and localization of genes in a -derived cell line (Pv11), capable of anhydrobiosis. We confirmed that all but two genes identified in the genome of are expressed in Pv11 cells.
View Article and Find Full Text PDFNon-biting midges (Chironomidae) are known to inhabit a wide range of environments, and certain species can tolerate extreme conditions, where the rest of insects cannot survive. In particular, the sleeping chironomid is known for the remarkable ability of its larvae to withstand almost complete desiccation by entering a state called anhydrobiosis. Chromosome numbers in chironomids are higher than in other dipterans and this extra genomic resource might facilitate rapid adaptation to novel environments.
View Article and Find Full Text PDFGenomic safe harbors (GSHs) provide ideal integration sites for generating transgenic organisms and cells and can be of great benefit in advancing the basic and applied biology of a particular species. Here we report the identification of GSHs in a dry-preservable insect cell line, Pv11, which derives from the sleeping chironomid, , and similar to the larvae of its progenitor species exhibits extreme desiccation tolerance. To identify GSHs, we carried out genome analysis of transgenic cell lines established by random integration of exogenous genes and found four candidate loci.
View Article and Find Full Text PDFPv11 is an insect cell line established from the midge Polypedilum vanderplanki, whose larval form exhibits an extreme desiccation tolerance known as anhydrobiosis. Pv11 itself is also capable of anhydrobiosis, which is induced by trehalose treatment. Here we report the successful construction of a genome editing system for Pv11 cells and its application to the identification of signaling pathways involved in anhydrobiosis.
View Article and Find Full Text PDFThe Pv11, an insect cell line established from the midge , is capable of extreme hypometabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11.
View Article and Find Full Text PDFThe Pv11 cell line established from an African chironomid, , is the only cell line tolerant to complete desiccation. In Pv11 cells, a constitutive expression system for Pv11 cells was previously exploited and several reporter genes were successfully expressed. Here we report the identification of an effective minimal promoter for Pv11 cells and its application to the Tet-On inducible expression system.
View Article and Find Full Text PDFLarvae of the sleeping chironomid Polypedilum vanderplanki are known for their extraordinary ability to survive complete desiccation in an ametabolic state called "anhydrobiosis". The unique feature of P. vanderplanki genome is the presence of expanded gene clusters associated with anhydrobiosis.
View Article and Find Full Text PDFLarvae of the African midge Polypedilum vanderplanki (Diptera: Chironomidae) show a form of extreme desiccation tolerance known as anhydrobiosis. The cell line Pv11 was recently established from the species, and these cells can also survive under desiccated conditions, and proliferate normally after rehydration. Here we report the identification of a new promoter, 121, which has strong constitutive transcriptional activity in Pv11 cells and promotes effective expression of exogenous genes.
View Article and Find Full Text PDFis a striking and unique example of an insect that can survive almost complete desiccation. Its genome and a set of dehydration-rehydration transcriptomes, together with the genome of (a congeneric desiccation-sensitive midge), were recently released. Here, using published and newly generated datasets reflecting detailed transcriptome changes during anhydrobiosis, as well as a developmental series, we show that the TCTAGAA DNA motif, which closely resembles the binding motif of the heat shock transcription activator (Hsf), is significantly enriched in the promoter regions of desiccation-induced genes in , such as genes encoding late embryogenesis abundant (LEA) proteins, thioredoxins, or trehalose metabolism-related genes, but not in Unlike , has double TCTAGAA sites upstream of the Hsf gene itself, which is probably responsible for the stronger activation of Hsf in during desiccation compared with To confirm the role of Hsf in desiccation-induced gene activation, we used the Pv11 cell line, derived from embryo.
View Article and Find Full Text PDFLarvae of the African midge Polypedilum vanderplanki show extreme desiccation tolerance, known as anhydrobiosis. Recently, the cultured cell line Pv11 was derived from this species; Pv11 cells can be preserved in the dry state for over 6 months and retain their proliferation potential. Here, we attempted to expand the use of Pv11 cells as a model to investigate the mechanisms underlying anhydrobiosis in P.
View Article and Find Full Text PDFCushing's disease (CD) and subclinical Cushing's disease (subCD) are both diseases caused by adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas. However, ACTH autonomy in subCD is weaker than in CD and there are no Cushingoid features in subCD. The differences of molecular mechanisms in ACTH autonomy between CD and subCD have not yet been reported.
View Article and Find Full Text PDFObesity and diabetes are rapidly reaching epidemic proportions in many parts of world and are becoming one of the major public health problems. Many studies have been performed to develop treatments for obesity and diabetes. In clinical aspect, for example, vitamin D was assumed to be a causal factor of obesity and diabetes, and the effect of vitamin D supplementation on the patients was assessed.
View Article and Find Full Text PDFFat accumulation and the dysfunction of visceral white adipose tissue (WAT), but not subcutaneous WAT, cause abnormalities in whole body metabolic homeostasis. However, no current drugs specifically target visceral WAT. The primary reason for this is that a practical in vitro culture system for mesenteric adipocytes has not been established.
View Article and Find Full Text PDFType 1 diabetes, one of two major forms of diabetes, results from the complete destruction of pancreatic beta cells. Viral infection has been suggested to be a trigger of beta cell destruction, the pathogenesis of type 1 diabetes. The aim of this study was to clarify the role of the protein encoded by intherferon stimulated gene (ISG) 15, an antiviral effector, in the development of this clinical entity.
View Article and Find Full Text PDFFulminant type 1 diabetes is an independent subtype of type 1 diabetes characterized by extremely rapid onset and absence of islet-related autoantibodies. However, detailed pathophysiology of this subtype is poorly understood. In this study, a comprehensive approach was applied to understand the pathogenesis of fulminant type 1 diabetes.
View Article and Find Full Text PDFObjective: White adipose tissue (WAT) of obesity is in the state of inflammation with progressive infiltration by macrophages and overproduction of reactive oxygen species (ROS), which can induce WAT dysfunction, including insulin resistance and adipocytokine dysregulation. Activating transcription factor 2 (ATF2) is a member of the ATF/cAMP response element binding family of transcription factors and known to be activated by cellular stressors, such as inflammatory cytokines, lipopolysaccharide (LPS), and ROS. DESIGN AND METHODS, RESULTS: Here, we show that ATF2 protein was significantly more induced in WAT of ob/ob mice compared with C57BL/6J mice.
View Article and Find Full Text PDFAdiponectin is exclusively expressed in adipose tissues and exhibits protective effects against cardiovascular and metabolic diseases. It enhances AMP-activated kinase (AMPK) and peroxisome proliferator-activated receptor α (PPARα) signaling in the liver and skeletal muscles, however, its signaling pathways in macrophages remain to be elucidated. Here, we show that adiponectin upregulated the expression of vascular endothelial growth factor (VEGF)-C, and induced phosphorylation of extracellular signal-regulated kinase (ERK) in macrophages.
View Article and Find Full Text PDFOxidative stress has been implicated as a causal role in atherosclerosis, microvascular complications of diabetes as well as in beta cell failure in type 2 diabetes. PPARgamma agonists not only improve insulin sensitivity but also eliminate oxidative stress. In mouse, catalase, a major antioxidant enzyme, is directly regulated by PPARgamma through two PPARgamma binding elements in its promoter.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2009
Obesity is associated with insulin resistance and a mild chronic inflammation in adipose tissues. Recent studies suggested that GM3 ganglioside mediates dysfunction in insulin signaling. However, it has not been determined the ganglioside profiling in adipose tissues of obese animals.
View Article and Find Full Text PDF