Acetal substitution reactions can proceed by a number of mechanisms, but oxocarbenium ion intermediates are involved in many of these reactions. Our research has focused on understanding the conformational preferences, structures, and reactions of these intermediates. This Account summarizes our observations that electrostatic effects play a significant role in defining the preferred conformations, and that torsional effects determine how those intermediates react.
View Article and Find Full Text PDFA single acyloxy group at C-2 can control the outcome of nucleophilic substitution reactions of pyran-derived acetals, but the extent of the neighboring-group participation depends on a number of factors. We show here that neighboring-group participation does not necessarily control the stereochemical outcome of acetal substitution reactions with weak nucleophiles. The 1,2-trans selectivity increased with increasing reactivity of the incoming nucleophile.
View Article and Find Full Text PDFPreparative reactions that occur efficiently under dilute, buffered, aqueous conditions in the presence of biomolecules find application in ligation, peptide synthesis, and polynucleotide synthesis and sequencing. However, the identification of functional groups or reagents that are mutually reactive with one another, but unreactive with biopolymers and water, is challenging. Shown here are cobalt catalysts that react with alkenes under dilute, aqueous, buffered conditions and promote efficient cycloisomerization and formal Friedel-Crafts reactions.
View Article and Find Full Text PDF