Previous research has found that lower temperature drilling is helpful to improve the hole quality of carbon fiber reinforced polymer (CFRP). However, the influence of the lower temperature drilling process on the mechanical behavior of composites is yet not fully understood. To examine the influence of the lower temperature drilling process on the mechanical behavior of CFRP, the open hole CFRP specimens used for mechanical tests were obtained with three cases: drilling with -25 °C/uncoated carbide drills/(1000 rpm, 0.
View Article and Find Full Text PDFMaterials with high strength and toughness have always been pursued by academic and industrial communities. This work presented a novel hybrid brick-and-mortar-like structure by introducing the wavy structure of the woodpecker beak for enhanced mechanical performance. The effects of tablet waviness and tablet wave number on the mechanical performance of the bio-inspired composites were analyzed.
View Article and Find Full Text PDFMaterials (Basel)
September 2021
While carbon-fiber-reinforced polymers (CFRPs) are widely used in the aerospace industry, they are not able to disperse current from lightning strikes because their conductivity is relatively low compared to metallic materials. As such, the undispersed current can cause the vaporization or delamination of the composites, threatening aircraft safety. In this paper, finite element models of lightning damage to CFRPs were established using commercial finite element analysis software, Abaqus, with the user-defined subroutines USDFLD and HEAVEL.
View Article and Find Full Text PDFDrilling of carbon fiber-reinforced plastics (CFRPs) is a challenging task in aviation and aerospace field. Damages, which can reduce the strength of the structure, often occur during secondary machining operations due to the applied cutting force and generated heat. The main objective of this study was to investigate the drilling performance and the deformation resistance of CFRPs subjected to cryogenic treatment based on glass transition temperature (Tg).
View Article and Find Full Text PDFPath planning algorithms for automated fiber placement are used to determine the directions of the fiber paths and the start and end positions on the mold surfaces. The quality of the fiber paths determines largely the efficiency and quality of the automated fiber placement process. The presented work investigated an efficient path planning algorithm based on surface meshing.
View Article and Find Full Text PDFGraphene has been regarded as one of the most promising two-dimensional nanomaterials. Even so, graphene was still faced with several key issues such as impedance mismatching and narrow bandwidth, which have hindered the practical applications of graphene-based nanocomposites in the field of microwave absorption materials. Herein, a series of Si-modified rGO@FeO composites were investigated and fabricated by a simple method.
View Article and Find Full Text PDFTribological properties of glass fiber-reinforced polymer (GFRP) composites used in reciprocating contact should be improved to secure the efficiency and safety because of risks of abrasion, adhesion, and fatigue deficiency amidst fiber, matrix, or interphase. This paper investigates the influence of graphene reinforcement on the wear resistance of a GFRP composite. Graphene was integrated into a typical GFRP composite as the surface coating using a modified resin film infusion method with the percolating paper assisted.
View Article and Find Full Text PDFThree-dimensional printing of continuous carbon fiber/epoxy composites (CCF/EPCs) is an emerging additive manufacturing technology for fiber-reinforced polymer composites and has wide application prospects. However, the 3D printing parameters and their relationship with the mechanical properties of the final printed samples have not been fully investigated in a computational and quantifiable way. This paper presents a sensitivity analysis (SA)-based parameter optimization framework for the 3D printing of CCF/EPCs.
View Article and Find Full Text PDFRecently, 3D printing of fiber-reinforced composites has gained significant research attention. However, commercial utilization is limited by the low fiber content and poor fiber-resin interface. Herein, a novel 3D printing process to fabricate continuous fiber-reinforced thermosetting polymer composites (CFRTPCs) is proposed.
View Article and Find Full Text PDF