Posttraumatic neuroinflammation is a key driver of secondary injury after traumatic brain injury (TBI). Pyroptosis, a proinflammatory form of programmed cell death, considerably activates strong neuroinflammation and amplifies the inflammatory response by releasing inflammatory contents. Therefore, treatments targeting pyroptosis may have beneficial effects on the treatment of secondary brain damage after TBI.
View Article and Find Full Text PDFNanoparticles (NPs) of the polydopamine (PDA)-based,loaded with temozolomide (TMZ) and conjugated with Pep-1 (Peptide-1) as a feasible nano-drug delivery system were constructed and utilized for chemotherapy (CT) and photothermal therapy (PTT) of glioblastoma (GBM). PDA NPs were synthesized from dopamine (DA) hydrochloride and reacted with TMZ to obtain the PDA-TMZ NPs and then the PDA NPs and the PDA-TMZ NPs were conjugated and modified by Pep-1 to obtain the Pep-1@PDA NPs and Pep-1@PDA-TMZ NPs the Schiff base reaction (SBR), respectively.Their dimensions, charge, and shape were characterized by dynamic light scattering (DLS) and scanning electron microscope (SEM).
View Article and Find Full Text PDFH3F3A K27M (H3.3K27M) is a newly identified molecular pathological marker in glioma and is strongly correlated with the malignancy of diffuse intrinsic pontine glioma (DIPG). In recent years, accumulating evidence has revealed that other types of glioma also contain the H3.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2022
Bacterial infection is one of the most serious physiological conditions threatening human health. There is an increasing demand for more effective bacterial diagnosis and treatment through non-invasive approaches. Among current antibacterial strategies of non-invasive approaches, photothermal antibacterial therapy (PTAT) has pronounced advantages with properties of minor damage to normal tissue and little chance to trigger antimicrobial resistance.
View Article and Find Full Text PDFAll-day passive radiative cooling has recently attracted broader attention for its potential as a viable energy technology. Although tremendous progress has been achieved, the design and fabrication of low-cost high-efficiency radiators for all-day passive radiative cooling remains a challenge. Herein, we report a new type of flexible composite radiator film with built-in artificial opal-like structures for all-day passive radiative cooling.
View Article and Find Full Text PDFConstitutive photomorphogenic 1 (COP1, also known as RFWD2), a ring-finger-type E3 ubiquitin ligase, has been reported to play a pivotal role in the regulation of cell growth, apoptosis, and DNA repair. Accumulating evidence has suggested that COP1 plays a role in tumorigenesis by triggering the ubiquitination and degradation of its substrates, but the potential mechanism remains unclear. In this study, COP1 was used as a bait in a yeast two-hybrid experiment to screen COP1-interacting proteins in a human brain cDNA library, and the results indicated that protocadherin 9 (PCDH9) was a potential binding protein of COP1.
View Article and Find Full Text PDFBackground: The postoperative recurrence of malignant gliomas has presented a clinical conundrum currently. Worse, there is no standard treatment for these recurrent tumours. Therefore, novel promising methods of clinical treatment are urgently needed.
View Article and Find Full Text PDFThe tumor susceptibility gene 101 (TSG101) has been reported to play important roles in the development and progression of several human cancers, such as pancreatic cancer, prostate cancer, and hepatocellular carcinoma. However, its potential roles and underlined mechanisms in human glioma are still needed to be further clarified. This study was designed to assess the expression of TSG101 in glioma patients and its effects on glioma cell proliferation, migration, and invasion.
View Article and Find Full Text PDFBackground: Postoperative recurrence is the main reason for poor clinical outcomes in glioma patients, so preventing tumor recurrence is crucial in the management of gliomas.
Methods: In this study, the expression of matrix metalloproteinases (MMPs) in normal tissues was detected via RNA-seq analysis. Glioma cases from the public databases (The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA)) were included in this study.
Although there have been tremendous achievements ever since the first work on an organic electroluminescent (EL) device that emitted polarized light, the development of flexible polarized emission organic light-emitting devices (OLEDs) is not without hurdles, and the challenge towards real-world applications still requires tremendous effort. In this paper, we proposed highly linearly polarized light-emission from flexible green OLEDs capitalized on integrated ultrathin metal-dielectric nanograting. The acquired polarized device with meticulously optimized geometric parameters yields an angle-invariant average extinction ratio beyond 20.
View Article and Find Full Text PDFPurpose: Glioma is a highly aggressive and lethal brain tumor. Signal transducers and activators of transcription (STAT) pathway are widely implicated in glioma carcinogenesis. Our previous study found that the Fynrelated kinase (FRK) gene, plays as a tumor suppressor in the development and progression of glioma.
View Article and Find Full Text PDFThe insufficient electron injection constitutes the major obstacle to achieving high-performance inverted organic light-emitting diodes (OLEDs). Here, a facile electron-injection architecture featuring a silver nanoparticle (AgNPs) interlayer-modified sol-gel-derived transparent zinc oxide (ZnO) ultrathin film is proposed and demonstrated. The optimized external quantum efficiencies of the developed inverted fluorescent and phosphorescent OLEDs capitalized on our proposed electron-injection structure reached 4.
View Article and Find Full Text PDFAs the new representative in the carbonaceous family, carbon dots (CDs) have gained remarkable research interests over the past decade. Herein, we report the facile preparation and thorough performance comparison of three types of carbon dots with the adoption of ubiquitous natural fruit juice as precursors and demonstrate their application in pH sensing, patterning and bioimaging. All the yielded CDs show interesting optical properties including evident single- or two-photon absorption and excitation-dependent photoluminescence along with the high fluorescent yield.
View Article and Find Full Text PDFA new approach for efficiently recovering the wasted light energy in conventional flexible organic light-emitting diodes (FOLEDs) is developed by implementing disordered micro-meander structures (DMMs) via laser speckle holography technology. Compared to conventional flat device architecture, the structured FOLEDs with DMMs result in substantial improvement of the device efficiency and superior angular color stability. The resulting current efficiency (CE) and external quantum efficiency (EQE) are 1.
View Article and Find Full Text PDFTiO₂ micro-/nano-structures with different morphologies have been successfully synthesized via a hydrothermal method. The effects of the solvents on the morphology and structure of the obtained products have been studied. The objective of the present paper is to compare the photocatalytic properties of the obtained TiO₂ products.
View Article and Find Full Text PDFPHAP1 (Putative HLA-DR-associated protein 1), also termed acidic leucine-rich nuclear phosphoprotein 32A (ANP32A), Phosphoprotein 32 (pp32) or protein phosphatase 2A inhibitor (I1PP2A), is a multifunctional protein aberrantly expressed in multiple types of human cancers. However, its expression pattern and clinical relevance in human glioma remain unknown. In this study, Western blotting and immunohistochemistry analysis demonstrated PHAP1 protein was highly expressed in glioma patients, especially in those with high-grade disease.
View Article and Find Full Text PDFA series of novel reduction-responsive micelles with tailored size were designed and prepared to release doxorubicin (DOX) for treating glioma, which were developed based on amphiphilic block copolymer poly (2-ethyl-2-oxazoline)-b-poly (ε-caprolactone) (PEtOz-SS-PCL) and the micelle size could be regulated by designing the polymer structure. The DOX-loaded PEtOz-SS-PCL micelles had small size and rapid drug release in reductive intracellular environments. Biodistribution and in vivo imaging studies in C6 glioma mice tumor model showed that DOX loaded PEtOz-SS-PCL43 micelles with the smallest size had superior accumulation and fast drug release in tumor sites.
View Article and Find Full Text PDFSH3GL2 (Src homology 3 (SH3) domain GRB2-like 2) is mainly expressed in the central nervous system and regarded as a tumour suppressor in human glioma. However, the molecular mechanism of the SH3GL2 protein involved in malignant behaviours of human glioma has not been elucidated. In this study, we tried to investigate the role of SH3GL2 in glioma cell migration and invasion and explore its underlined molecular mechanism.
View Article and Find Full Text PDFCAPON is an adapter protein for nitric oxide synthase 1 (NOS1). CAPON has two isoforms in the human brain: CAPON-L (long form of CAPON) and CAPON-S (short form of CAPON). Recent studies have indicated the involvement of CAPON in tumorigenesis beyond its classical role in NOS1 activity regulation.
View Article and Find Full Text PDFJab1 (Jun activation domain-binding protein 1), also known as CSN5 (COP9 signalosome subunit 5), is frequently overexpressed in several cancer types. However, the biological functions and the molecular mechanisms of the Jab1 protein in human gliomas have not been investigated. In this study, we found that Jab1 protein was increasingly expressed in human glioma tissues comparing with normal brain tissues (Non-tumor).
View Article and Find Full Text PDFHuman glioma causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying glioma progression are still largely unknown. COP1 (constitutively photomorphogenic 1), an E3 ubiquitin ligase, is important in cell survival, development, cell growth, and cancer biology by regulating different substrates.
View Article and Find Full Text PDFMagnesium based alloys are attracting tremendous interests as the novel biodegradable metallic biomaterials. However, the rapid in vivo degradation and the limited surface biocompatibility restrict their clinical applications. Surface modification represents one of the important approaches to control the corrosion rate of Mg based alloys and to enhance the biocompatibility.
View Article and Find Full Text PDFNitric Oxide Synthase 1 Adaptor Protein (NOS1AP, previously named CAPON) was firstly identified in rat brain in 1998. Structurally, NOS1AP consists of a phosphotyrosine-binding (PTB) domain at its N-terminal and a PDZ (PSD-95/discs-large/ZO-1) ligand motif at its C-terminal. The PTB domain of NOS1AP mediates the interactions with Dexras1, scribble, and synapsins.
View Article and Find Full Text PDF