Publications by authors named "Yufen Xiao"

Messenger RNA lipid-nanoparticle-based therapies represent an emerging class of medicines for a variety of applications. However, anti-poly(ethylene glycol) (anti-PEG) antibodies generated by widely used PEGylated medicines and lipid nanoparticles hinder therapeutic efficacy upon repeated dosing. Here we report the chemical design, synthesis and optimization of high-density brush-shaped polymer lipids that reduce anti-PEG antibody binding to improve protein production consistency in repeated dosing.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) are an essential component of messenger RNA (mRNA) vaccines and genome editing therapeutics. Ionizable amino lipids, which play the most crucial role in enabling mRNA to overcome delivery barriers, have, to date, been restricted to two-dimensional (2D) architectures. Inspired by improved physicochemical properties resulting from the incorporation of three-dimensionality (3D) into small-molecule drugs, we report the creation of 3D ionizable lipid designs through the introduction of bicyclo[1.

View Article and Find Full Text PDF
Article Synopsis
  • * The study introduces Fe-norepinephrine nanoparticles (Fe-NE NPs) that use ferrous ions and norepinephrine to efficiently deliver iron, releasing it within tumor cells to trigger the Fenton reaction.
  • * Fe-NE NPs also harness photothermal conversion to produce heat from light, boosting the Fenton reaction and improving antitumor efficiency through a combination of both therapies.
View Article and Find Full Text PDF
Article Synopsis
  • Chronic diabetic wound patients often face complications like high glucose levels, immune dysfunction, and prolonged inflammation, leading to delayed healing.
  • Researchers developed a polymer vesicle that combines antioxidant properties and immune system modulation using a specific polymer composition to treat these wounds effectively.
  • Animal experiments demonstrated that this vesicle significantly improved healing rates, resulting in complete recovery of infected diabetic wounds within eight days.
View Article and Find Full Text PDF

In vivo genome correction holds promise for generating durable disease cures; yet, effective stem cell editing remains challenging. In this work, we demonstrate that optimized lung-targeting lipid nanoparticles (LNPs) enable high levels of genome editing in stem cells, yielding durable responses. Intravenously administered gene-editing LNPs in activatable tdTomato mice achieved >70% lung stem cell editing, sustaining tdTomato expression in >80% of lung epithelial cells for 660 days.

View Article and Find Full Text PDF

Therapeutic genome editing of haematopoietic stem cells (HSCs) would provide long-lasting treatments for multiple diseases. However, the in vivo delivery of genetic medicines to HSCs remains challenging, especially in diseased and malignant settings. Here we report on a series of bone-marrow-homing lipid nanoparticles that deliver mRNA to a broad group of at least 14 unique cell types in the bone marrow, including healthy and diseased HSCs, leukaemic stem cells, B cells, T cells, macrophages and leukaemia cells.

View Article and Find Full Text PDF

Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases.

View Article and Find Full Text PDF

Approximately 10% of Cystic Fibrosis (CF) patients, particularly those with CF transmembrane conductance regulator (CFTR) gene nonsense mutations, lack effective treatments. The potential of gene correction therapy through delivery of the CRISPR/Cas system to CF-relevant organs/cells is hindered by the lack of efficient genome editor delivery carriers. Herein, we report improved Lung Selective Organ Targeting Lipid Nanoparticles (SORT LNPs) for efficient delivery of Cas9 mRNA, sgRNA, and donor ssDNA templates, enabling precise homology-directed repair-mediated gene correction in CF models.

View Article and Find Full Text PDF

Messenger RNA (mRNA)-based therapeutics are transforming the landscapes of medicine, yet targeted delivery of mRNA to specific cell types while minimizing off-target accumulation remains challenging for mRNA-mediated therapy. In this study, we report an innovative design of a cationic lipid- and hyaluronic acid-based, dual-targeted mRNA nanoformulation that can display the desirable stability and efficiently transfect the targeted proteins into lung tissues. More importantly, the optimized dual-targeted mRNA nanoparticles (NPs) can not only accumulate primarily in lung tumor cells and inflammatory macrophages after inhalation delivery but also efficiently express any desirable proteins (e.

View Article and Find Full Text PDF

PROteolysis TArgeting Chimeras (PROTACs) are an emerging class of promising therapeutic modalities that selectively degrade intracellular proteins of interest by hijacking the ubiquitin-proteasome system. However, the lack of techniques to efficiently transport these degraders to targeted cells and consequently the potential toxicity of PROTACs limit their clinical applications. Here, a strategy of nanoengineered PROTACs, that is, Nano-PROTACs, is reported, which improves the bioavailability of PROTACs and maximizes their capacity to therapeutically degrade intracellular oncogenic proteins for tumor therapy.

View Article and Find Full Text PDF
Article Synopsis
  • Nanotechnology has significantly advanced the development of nanomedicines for treating diseases like cancer, showing promise in preclinical studies by improving outcomes and reducing side effects.
  • *Despite this progress, there are challenges in moving these treatments from research settings (bench) to actual patient care (bedside), with only a few nanomedicines receiving clinical approval.
  • *The review discusses recent advancements, existing obstacles in clinical translation, and offers insights to enhance the future development of cancer nanotherapeutics.
View Article and Find Full Text PDF

The great success achieved by the two highly-effective messenger RNA (mRNA) vaccines during the COVID-19 pandemic highlights the great potential of mRNA technology. Through the evolution of mRNA technology, chemistry has played an important role from mRNA modification to the synthesis of mRNA delivery platforms, which allows various applications of mRNA to be achieved both and . In this tutorial review, we provide a summary and discussion on the significant progress of emerging mRNA technologies, as well as the underlying chemical designs and principles.

View Article and Find Full Text PDF

Macrophages in atherosclerotic lesions promote plaque progression and are an attractive therapeutic target in cardiovascular research. Here we present a protocol for synthesis of small interfering RNA (siRNA) nanoparticles (NP) that target lesional macrophages as a potential treatment for atherosclerosis. Ca/calmodulin-dependent protein kinase γ (CaMKIIγ) activity in macrophages of advanced human and mouse atherosclerotic plaques drives necrosis by downregulating the expression of the efferocytosis receptor MerTK.

View Article and Find Full Text PDF

The field of two-dimensional (2D) nanomaterial-based cancer immunotherapy combines research from multiple subdisciplines of material science, nano-chemistry, in particular nano-biological interactions, immunology, and medicinal chemistry. Most importantly, the "biological identity" of nanomaterials governed by bio-molecular corona in terms of bimolecular types, relative abundance, and conformation at the nanomaterial surface is now believed to influence blood circulation time, bio-distribution, immune response, cellular uptake, and intracellular trafficking. A better understanding of nano-bio interactions can improve utilization of 2D nano-architectures for cancer immunotherapy and immunotheranostics, allowing them to be adapted or modified to treat other immune dysregulation syndromes including autoimmune diseases or inflammation, infection, tissue regeneration, and transplantation.

View Article and Find Full Text PDF

RNA interference (RNAi) is a powerful approach in the treatment of various diseases including cancers. The clinical translation of small interfering RNA (siRNA)-based therapy requires safe and efficient delivery vehicles. Here, we report a siRNA nanogels (NG)-based delivery vehicle, which is driven directly by the intercalation between nucleic acid bis-intercalator and siRNA molecules.

View Article and Find Full Text PDF

The modulation of intracellular reactive oxygen species (ROS) levels is crucial for cellular homeostasis and determination of cellular fate. A sublethal level of ROS sustains cell proliferation, differentiation and promotes tumor metastasis, while a drastic ROS burst directly induces apoptosis. Herein, surface-oxidized arsenene nanosheets (As/AsO NSs) with type II heterojunction are fabricated with efficient ·O and O production and glutathione consumption through prolonging the lifetime of photo-excited electron-hole pairs.

View Article and Find Full Text PDF
Article Synopsis
  • Arsenical drugs have been effective in treating acute promyelocytic leukemia, but using them for solid tumors faces challenges due to their toxicity versus effectiveness.
  • Researchers developed PEGylated arsenene nanodots (AsNDs@PEG) that can specifically target and kill solid tumor cells by inducing oxidative stress, leading to severe cellular damage.
  • Combining AsNDs@PEG with the plant-derived anticancer drug β-elemene shows enhanced antitumor effects, and their safe fabrication presents a promising new treatment option for solid tumors with minimal side effects.
View Article and Find Full Text PDF

The development of two-dimensional (2D) monoelemental nanomaterials (Xenes) for biomedical applications has generated intensive interest over these years. In this paper, the biomedical applications using Xene-based 2D nanomaterials formed by group VA (e.g.

View Article and Find Full Text PDF

Clay-based nanomaterials, especially 2:1 aluminosilicates such as vermiculite, biotite, and illite, have demonstrated great potential in various fields. However, their characteristic sandwiched structures and the lack of effective methods to exfoliate two-dimensional (2D) functional core layers (FCLs) greatly limit their future applications. Herein, we present a universal wet-chemical exfoliation method based on alkali etching that can intelligently "capture" the ultrathin and biocompatible FCLs (MgO and FeO) sandwiched between two identical tetrahedral layers (SiO and AlO) from vermiculite.

View Article and Find Full Text PDF

Ultrasound (US)-mediated sonodynamic therapy (SDT) has emerged as a superior modality for cancer treatment owing to the non-invasiveness and high tissue-penetrating depth. However, developing biocompatible nanomaterial-based sonosensitizers with efficient SDT capability remains challenging. Here, we employed a liquid-phase exfoliation strategy to obtain a new type of two-dimensional (2D) stanene-based nanosheets (SnNSs) with a band gap of 2.

View Article and Find Full Text PDF

Pnictogens (the non-metal phosphorus, metalloids arsenic and antimony, and metal bismuth) possess diverse chemical characteristics that support the formation of extended molecular structures. As witnessed by the centuries-old (and ongoing) clinical utilities, pnictogen-based compounds have secured their places in history as "magic bullet" therapeutic drugs in medicinal contexts. Moreover, with the development of recent metalloproteomics and bio-coordination chemistry, the pnictogen-based drugs functionally binding to proteins/enzymes in biological systems have been underlaid for "drug repurposing" with promising opportunities.

View Article and Find Full Text PDF

Diabetes mellitus is a lifelong metabolic disease that requires frequent subcutaneous injections of insulin. However, this method of administration can be associated with patient discomfort and local tissue infection. Oral delivery of insulin has been pursued as a more convenient method for diabetes treatment, given its likely superior patient compliance and convenience as well as cost-effectiveness.

View Article and Find Full Text PDF

Inspired by cell membrane structures, synthetic polymer vesicles caused great expectations for the preparation of biomedicine for decades. However, in contrast to bio-membranes, which consist of inhomogeneous features, conventional synthetic polymer vesicles usually consist of a homogeneous membrane which is purely made out of hydrophobic components. This significantly limited the versatility of synthetic polymer vesicle membranes.

View Article and Find Full Text PDF

In this review, we summarized recent advances in the development and biological applications of polymeric nanoparticles embedded with superparamagnetic iron oxide nanoparticles (SPIONs). Superparamagnetic polymeric nanoparticles include core-shell nanoparticles, superparamagnetic polymeric micelles and superparamagnetic polymersomes. They have potential for various biomedical applications, including magnetic resonance imaging (MRI) contrast agents, drug delivery, detection of bacteria, viruses and proteins, etc.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondnpnjqssrd2ab8j2ke7t047ems5pon2l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once